1,155 research outputs found
Polymodal TRPV1 and TRPV4 sensors colocalize but do not functionally interact in a subpopulation of mouse retinal ganglion cells
Taboo tattoos? A study of the gendered effects of body art on consumers' attitudes toward visibly tattooed front line staff
The purpose of this experiment is to examine the gendered effects of body art on consumers’ attitudes toward visibly tattooed employees. We analyse the reaction of 262 respondents with exposure to male and female front line staff in two distinct job contexts: a surgeon and an automobile mechanic. The results demonstrate differences on three dimensions: a) job context, b) sex of face and c) stimulus (i.e., tattooed or not). We demonstrate significant interaction effects on those three dimensions, and our findings point to the intersectionality of gender-based and tattoo-based discrimination. Consumers have a negative reaction to body art, but perceptions of tattoos on male and female front line staff differ significantly. A key marketing challenge is how to balance employees’ individual rights to self-expression and at the same time cater to consumers’ expectations regarding appearance of staff. Our study forms the basis for this debate that is only just emerging.PostprintPeer reviewe
Warped Kaluza-Klein Dark Matter
Warped compactifications of type IIB string theory contain natural dark
matter candidates: Kaluza-Klein modes along approximate isometry directions of
long warped throats. These isometries are broken by the full compactification,
including moduli stabilization; we present a thorough survey of Kaluza-Klein
mode decay rates into light supergravity modes and Standard Model particles. We
find that these dark matter candidates typically have lifetimes longer than the
age of the universe. Interestingly, some choices for embedding the Standard
Model in the compactification lead to decay rates large enough to be observed,
so this dark matter sector may provide constraints on the parameter space of
the compactification.Comment: 37pp; v2. references, minor clarificatio
The fracture toughness of small animal cortical bone measured using arc-shaped tension specimens: Effects of bisphosphonate and deproteinization treatments
Small animal models, and especially transgenic models, have become widespread in the study of bone mechanobiology and metabolic bone disease, but test methods for measuring fracture toughness on multiple replicates or at multiple locations within a single small animal bone are lacking. Therefore, the objective of this study was to develop a method to measure cortical bone fracture toughness in multiple specimens and locations along the diaphysis of small animal bones. Arc-shaped tension specimens were prepared from the mid-diaphysis of rabbit ulnae and loaded to failure to measure the radial fracture toughness in multiple replicates per bone. The test specimen dimensions, crack length, and maximum load met requirements for measuring the plane strain fracture toughness. Experimental groups included a control group, bisphosphonate treatment group, and an ex vivo deproteinization treatment following bisphosphonate treatment (5 rabbits/group and 15 specimens/group). The fracture toughness of ulnar cortical bone from rabbits treated with zoledronic acid for six months exhibited no difference compared with the control group. Partially deproteinized specimens exhibited significantly lower fracture toughness compared with both the control and bisphosphonate treatment groups. The deproteinization treatment increased tissue mineral density (TMD) and resulted in a negative linear correlation between the measured fracture toughness and TMD. Fracture toughness measurements were repeatable with a coefficient of variation of 12–16% within experimental groups. Retrospective power analysis of the control and deproteinization treatment groups indicated a minimum detectable difference of 0.1 MPa·m1/2. Therefore, the overall results of this study suggest that arc-shaped tension specimens offer an advantageous new method for measuring the fracture toughness in small animal bones
LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed
Running off-site software middleboxes at third-party service providers has
been a popular practice. However, routing large volumes of raw traffic, which
may carry sensitive information, to a remote site for processing raises severe
security concerns. Prior solutions often abstract away important factors
pertinent to real-world deployment. In particular, they overlook the
significance of metadata protection and stateful processing. Unprotected
traffic metadata like low-level headers, size and count, can be exploited to
learn supposedly encrypted application contents. Meanwhile, tracking the states
of 100,000s of flows concurrently is often indispensable in production-level
middleboxes deployed at real networks.
We present LightBox, the first system that can drive off-site middleboxes at
near-native speed with stateful processing and the most comprehensive
protection to date. Built upon commodity trusted hardware, Intel SGX, LightBox
is the product of our systematic investigation of how to overcome the inherent
limitations of secure enclaves using domain knowledge and customization. First,
we introduce an elegant virtual network interface that allows convenient access
to fully protected packets at line rate without leaving the enclave, as if from
the trusted source network. Second, we provide complete flow state management
for efficient stateful processing, by tailoring a set of data structures and
algorithms optimized for the highly constrained enclave space. Extensive
evaluations demonstrate that LightBox, with all security benefits, can achieve
10Gbps packet I/O, and that with case studies on three stateful middleboxes, it
can operate at near-native speed.Comment: Accepted at ACM CCS 201
Babbit v. Sweet Home Chapter of Communities for a Great Oregon: Preserving the Critical Link Between Habitat Modification and the Taking of an Endangered Species
Variability in efficiency of particulate organic carbon export: A model study
The flux of organic carbon from the surface ocean to mesopelagic depths is a key component of the global carbon cycle and is ultimately derived from primary production (PP) by phytoplankton. Only a small fraction of organic carbon produced by PP is exported from the upper ocean, referred to as the export efficiency (herein e-ratio). Limited observations of the e-ratio are available and there is thus considerable interest in using remotely-sensed parameters such as sea surface temperature to extrapolate local estimates to global annual export flux. Currently, there are large discrepancies between export estimates derived in this way; one possible explanation is spatial or temporal sampling bias in the observations. Here we examine global patterns in the spatial and seasonal variability in e-ratio and the subsequent effect on export estimates using a high resolution global biogeochemical model. NEMO-MEDUSA represents export as separate slow and fast sinking detrital material whose remineralisation is respectively temperature dependent and a function of ballasting minerals. We find that both temperature and the fraction of export carried by slow sinking particles are factors in determining e-ratio, suggesting that current empirical algorithms for e-ratio that only consider temperature are overly simple. We quantify the temporal lag between PP and export, which is greatest in regions of strong variability in PP where seasonal decoupling can result in large e-ratio variability. Extrapolating global export estimates from instantaneous measurements of e-ratio is strongly affected by seasonal variability, and can result in errors in estimated export of up to ±60%
Predictors of Radiotherapy Induced Bone Injury (RIBI) after stereotactic lung radiotherapy
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to identify clinical and dosimetric factors associated with radiotherapy induced bone injury (RIBI) following stereotactic lung radiotherapy.</p> <p>Methods</p> <p>Inoperable patients with early stage non-small cell lung cancer, treated with SBRT, who received 54 or 60 Gy in 3 fractions, and had a minimum of 6 months follow up were reviewed. Archived treatment plans were retrieved, ribs delineated individually and treatment plans re-computed using heterogeneity correction. Clinical and dosimetric factors were evaluated for their association with rib fracture using logistic regression analysis; a dose-event curve and nomogram were created.</p> <p>Results</p> <p>46 consecutive patients treated between Oct 2004 and Dec 2008 with median follow-up 25 months (m) (range 6 – 51 m) were eligible. 41 fractured ribs were detected in 17 patients; median time to fracture was 21 m (range 7 – 40 m). The mean maximum point dose in non-fractured ribs (n = 1054) was 10.5 Gy ± 10.2 Gy, this was higher in fractured ribs (n = 41) 48.5 Gy ± 24.3 Gy (p < 0.0001). On univariate analysis, age, dose to 0.5 cc of the ribs (D<sub>0.5</sub>), and the volume of the rib receiving at least 25 Gy (V<sub>25</sub>), were significantly associated with RIBI. As D<sub>0.5</sub> and V<sub>25</sub> were cross-correlated (Spearman correlation coefficient: 0.57, p < 0.001), we selected D<sub>0.5</sub> as a representative dose parameter. On multivariate analysis, age (odds ratio: 1.121, 95% CI: 1.04 – 1.21, p = 0.003), female gender (odds ratio: 4.43, 95% CI: 1.68 – 11.68, p = 0.003), and rib D<sub>0.5</sub> (odds ratio: 1.0009, 95% CI: 1.0007 – 1.001, p < 0.0001) were significantly associated with rib fracture.</p> <p>Using D<sub>0.5,</sub> a dose-event curve was constructed estimating risk of fracture from dose at the median follow up of 25 months after treatment. In our cohort, a 50% risk of rib fracture was associated with a D<sub>0.5</sub> of 60 Gy.</p> <p>Conclusions</p> <p>Dosimetric and clinical factors contribute to risk of RIBI and both should be included when modeling risk of toxicity. A nomogram is presented using D<sub>0.5</sub>, age, and female gender to estimate risk of RIBI following SBRT. This requires validation.</p
Measurement of the Michel Parameters in Leptonic Tau Decays
The Michel parameters of the leptonic tau decays are measured using the OPAL
detector at LEP. The Michel parameters are extracted from the energy spectra of
the charged decay leptons and from their energy-energy correlations. A new
method involving a global likelihood fit of Monte Carlo generated events with
complete detector simulation and background treatment has been applied to the
data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding
to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu
universality is assumed and inferring the tau polarization from neutral current
data, the measured Michel parameters are extracted. Limits on non-standard
coupling constants and on the masses of new gauge bosons are obtained. The
results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European
Physical Journal
A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where
Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL
detector at LEP. Lambda_b are selected by the presence of energetic Lambda
particles in bottom events tagged by the presence of displaced secondary
vertices. A fit to the momenta of the Lambda particles separates signal from B
meson and fragmentation backgrounds. The measured product branching ratio is
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))%
Combined with a previous OPAL measurement, one obtains
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European
Physical Journal
- …
