49 research outputs found
NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes.
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis
Clinical validation of an AI-based pathology tool for scoring of metabolic dysfunction-associated steatohepatitis
\ua9 The Author(s) 2024.Metabolic dysfunction-associated steatohepatitis (MASH) is a major cause of liver-related morbidity and mortality, yet treatment options are limited. Manual scoring of liver biopsies, currently the gold standard for clinical trial enrollment and endpoint assessment, suffers from high reader variability. This study represents the most comprehensive multisite analytical and clinical validation of an artificial intelligence (AI)-based pathology system, AI-based measurement of metabolic dysfunction-associated steatohepatitis (AIM-MASH), to assist pathologists in MASH trial histology scoring. AIM-MASH demonstrated high repeatability and reproducibility compared to manual scoring. AIM-MASH-assisted reads by expert MASH pathologists were superior to unassisted reads in accurately assessing inflammation, ballooning, MAS ≥ 4 with ≥1 in each score category and MASH resolution, while maintaining non-inferiority in steatosis and fibrosis assessment. These findings suggest that AIM-MASH could mitigate reader variability, providing a more reliable assessment of therapeutics in MASH clinical trials
