15 research outputs found

    The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution

    Get PDF
    The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. Here, we develop a tool to quantify frameshift mutations in MSI colorectal and endometrial cancer. Our results show that frameshift mutation frequency is negatively correlated to the predicted immunogenicity of the resulting peptides, suggesting counterselection of cell clones with highly immunogenic frameshift peptides. This correlation is absent in tumors with Beta-2-microglobulin mutations, and HLA-A*02:01 status is related to cMS mutation patterns. Importantly, certain outlier mutations are common in MSI cancers despite being related to frameshift peptides with functionally confirmed immunogenicity, suggesting a possible driver role during MSI tumor evolution. Neoantigens resulting from shared mutations represent promising vaccine candidates for prevention of MSI cancers. DNA mismatch repair (MMR)-deficient cancers with microsatellite-instability are characterized by a high load of frameshift mutation-derived neoantigens. Here, by mapping the frameshift mutation landscape and predicting the immunogenicity of the resulting peptides, the authors show evidence of immunoediting in MMR-deficient colorectal and endometrial cancers.Peer reviewe

    Haftmittelfreie, biobasierte Faserverbundwerkstoffe durch UV-unterstützte Grenzflächenvernetzung

    No full text
    674303

    Improvement of the fatigue behaviour of cellulose/polyolefin composites using photo-chemical fibre surface modification bio-inspired by natural role models

    No full text
    AbstractBased on the knowledge that plant structures often have graded stiffness transitions between strengthening elements and the surrounding matrix, which result in good damping behaviour and high toughness of the plant structure, the fatigue behaviour of composites made from rayon fibre and polypropylene (PP) as a matrix could be enhanced by photochemical surface modification of the regenerated cellulose fibres. The surface modification was achieved by deposition of UV-polymerized organic thin layers using pentaerythritol triacrylate (PETA) as the monomer. It has been shown earlier that the photochemical modification yields a decrease in wettability of the highly hydrophilic and water adsorbing viscose fibres and an increase in their affinity towards non-polar substances, thus promoting fibre-matrix adhesion. The presented experiments proved that the distinguished mechanical properties of the deposited layer structure also mimic the graded transition and provide good damping and fatigue behaviour superior to either untreated rayon/PP or rayon/maleic anhydride-modified PP composites.</jats:p

    Tuning the density of zwitterionic polymer brushes on PET fabrics by aminolysis : Effect on antifouling performances

    No full text
    Here, we synthesize zwitterionic polymer brushes on polyester fabrics by atom transfer radical polymerization (ATRP) after a prefunctionalization step involving an aminolysis reaction with ethylenediamine. Aminolysis is an easy method to achieve homogeneous distributions of functional groups on polyester fibers (PET) fabrics. Varying the polymerization time and the prefunctionalization conditions of the reaction, it is possible to tune the amount of water retained over the surface and study its effect on protein adhesion. This study revealed that the polymerization time plays a major role in preventing protein adhesion on the PET surface

    Tuning the Density of Zwitterionic Polymer Brushes on PET Fabrics by Aminolysis: Effect on Antifouling Performances

    No full text
    Here, we synthesize zwitterionic polymer brushes on polyester fabrics by atom transfer radical polymerization (ATRP) after a prefunctionalization step involving an aminolysis reaction with ethylenediamine. Aminolysis is an easy method to achieve homogeneous distributions of functional groups on polyester fibers (PET) fabrics. Varying the polymerization time and the prefunctionalization conditions of the reaction, it is possible to tune the amount of water retained over the surface and study its effect on protein adhesion. This study revealed that the polymerization time plays a major role in preventing protein adhesion on the PET surface.</jats:p

    Towards coupling agent-free composites made from regenerated cellulose/HDPE by UV radiation-induced cross-linking

    Get PDF
    This research aims to enhance fibre-matrix adhesion in bio-based fibre-reinforced polyolefins without using adhesion promoters. The primary focus is to establish a cross-linking mechanism between cellulose fibres and polyethylene by applying UV irradiation to a UV-transparent matrix and UV-absorbing fibres. The influence of UV treatment on the composite properties is evaluated by tensile, interfacial and interlaminar shear strength tests. The UV irradiation decreases the critical fragment length in single fibre fragmentation tests, indicating an improved fibre-matrix adhesion. The UV-irradiated composites’ tensile strength and Young’s modulus are found to be ~10% (for 3- and 8-minute irradiation) and ~50% (for 8-minute irradiation), respectively, higher than those of the untreated samples. Furthermore, the UV irradiation leads to an improvement in the interlaminar shear strength by 25%. The variation of the UV-irradiation time (3 min and 8 min) and the comparison of the properties of semi-finished composite sheets and composites also reveal chemical and physical changes in the regenerated cellulose fibres due to heat adsorption. The proposed mechanism of interfacial crosslinking is confirmed by FTIR spectroscopy. The results suggest an approach to overcome poor compatibility between hydrophobic polyolefin matrix and hydrophilic cellulose-based fibres, resulting in adhesive-free bio-based composites

    On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination

    No full text
    Although current desalination technologies are mature enough and advanced, the shortage of freshwater is still considered as one of the most pressing global issues. Therefore, there is a strong incentive to explore and investigate new potential methods with low energy consumption. We have previously reported that reversible thermally induced sorption/desorption process using polymeric hydrogels hold promise for water desalination with further development. In order to develop a more effective hydrogels architecture, polyelectrolyte moieties were introduced in this work as pendent chains and a thermally responsive polymer as network backbone using reversible addition-fragmentation chain transfer (RAFT) polymerisation. The ability of the comb-type polymeric hydrogels to desalinate water was evaluated. These hydrogels were proved to absorb water with low salinity from brine solution of 2 g L &minus; 1 NaCl and release the absorbed water at relatively low temperature conditions of 50 ∘ C. The fraction of the grafted polyacrylic acid and the comb-chain length were varied to understand their influence on the swelling/deswelling behaviour for these hydrogels. The ionic fraction in the hydrogels and the resulting hydrophilic/hydrophobic balance are crucial for the proposed desalination process. In contrast, the comb-chain length impacted the swelling behaviour of hydrogels but showed relatively little influence on the dewatering process
    corecore