1,703 research outputs found
Two-Dimensional Fluctuating Vesicles in Linear Shear Flow
The stochastic motion of a two-dimensional vesicle in linear shear flow is
studied at finite temperature. In the limit of small deformations from a
circle, Langevin-type equations of motion are derived, which are highly
nonlinear due to the constraint of constant perimeter length. These equations
are solved in the low temperature limit and using a mean field approach, in
which the length constraint is satisfied only on average. The constraint
imposes non-trivial correlations between the lowest deformation modes at low
temperature. We also simulate a vesicle in a hydrodynamic solvent by using the
multi-particle collision dynamics technique, both in the quasi-circular regime
and for larger deformations, and compare the stationary deformation correlation
functions and the time autocorrelation functions with theoretical predictions.
Good agreement between theory and simulations is obtained.Comment: 13 pages, 7 figure
Effects of ultraviolet radiation on aquatic bryophytes
The depletion of the stratospheric ozone layer as a result of anthropogenic activities increases the ultraviolet-B (UV-B) irradiance at ground level. This may lead to harmful biological consequences affecting photosynthetic organisms. Mountain streams are especially exposed to a UV-B increase, and bryophytes play a key ecological role in them. In this paper, the effects of enhanced UV-B radiation on photosynthetic organisms in general and on bryophytes in particular are described. Hereafter, some results obtained by our group on the effects of UV-B on bryophytes from mountain streams are presented. Laboratory and field experiments show that these effects depend on the species, the environmental factors (such as temperature), and the origin of the samples (sun or shade conditions, low or high altitude). Among the variables measured, the maximum quantum yield of photosystem II (Fv/Fm) and the level of UV-absorbing compounds seem to be the most responsive to enhanced UV-B, but no variable responded in the same manner in every species. The potential use of aquatic bryophytes as bio-indicators of changes in ambient UV-B radiation would require an adequate selection of both variables and species. Promising variables are Fv/Fm, the concentration of UV-absorbing compounds (especially if they are analyzed individually) and DNA damage, whereas the liverwort Jungermannia exsertifolia subsp. cordifolia has been revealed to be a good bio-indicator species. Globally, the responses of aquatic bryophytes to UV-B radiation and their protecting systems are still poorly characterized, and thus further study is required under both controlled and field conditions.La degradación antropogénica de la capa de ozono estratosférico provoca un aumento de la radiación ultravioleta-B (UV-B) en la superficie de La Tierra. Esto puede causar consecuencias biológicas nocivas en los organismos fotosintéticos. Los arroyos de montaña están especialmente expuestos al aumento de UV-B, y los briófitos desempeñan un papel ecológico crucial en estos ecosistemas. En el presente artículo, se describen los efectos de un aumento de radiación UV-B sobre los organismos fotosintéticos en general y sobre los briófitos en particular. A continuación, se presentan algunos resultados obtenidos por nuestro grupo de investigación sobre los efectos de la radiación UV-B en briófitos de arroyos de montaña. Los experimentos realizados tanto en campo como en laboratorio muestran que dichos efectos dependen de la especie considerada, de los factores ambientales (como la temperatura) y de la procedencia de las muestras (aclimatadas a condiciones de sol o sombra, provenientes de baja o elevada altitud). Entre las variables analizadas, el rendimiento cuántico máximo del fotosistema II (Fv/Fm) y el nivel de compuestos absorbentes de radiación UV parecen ser las que mejor responden a un aumento de UV-B, pero ninguna variable responde de la misma manera en todas las especies. El uso potencial de los briófitos acuáticos como bioindicadores de cambios en los niveles naturales de radiación UV-B requiere una selección adecuada tanto de las variables analizadas como de las especies empleadas. Fv/Fm y la concentración de compuestos absorbentes de radiación UV (en especial si éstos son analizados individualmente), junto con los daños en el ADN, parecen ser las variables más prometedoras en este campo, mientras que la hepática Jungermannia exsertifolia subsp. cordifolia podría resultar una buena especie bioindicadora. Desde un punto de vista global, las respuestas de los briófitos acuáticos a la radiación UV-B, y los mecanismos protectores que utilizan para hacerle frente, están todavía poco caracterizados, y en consecuencia se necesita una mayor investigación en condiciones controladas y en campo
Swinging and tumbling of elastic capsules in shear flow
The deformation of an elastic micro-capsule in an infinite shear flow is
studied numerically using a spectral method. The shape of the capsule and the
hydrodynamic flow field are expanded into smooth basis functions. Analytic
expressions for the derivative of the basis functions permit the evaluation of
elastic and hydrodynamic stresses and bending forces at specified grid points
in the membrane. Compared to methods employing a triangulation scheme, this
method has the advantage that the resulting capsule shapes are automatically
smooth, and few modes are needed to describe the deformation accurately.
Computations are performed for capsules both with spherical and ellipsoidal
unstressed reference shape. Results for small deformations of initially
spherical capsules coincide with analytic predictions. For initially
ellipsoidal capsules, recent approximative theories predict stable oscillations
of the tank-treading inclination angle, and a transition to tumbling at low
shear rate. Both phenomena have also been observed experimentally. Using our
numerical approach we could reproduce both the oscillations and the transition
to tumbling. The full phase diagram for varying shear rate and viscosity ratio
is explored. While the numerically obtained phase diagram qualitatively agrees
with the theory, intermittent behaviour could not be observed within our
simulation time. Our results suggest that initial tumbling motion is only
transient in this region of the phase diagram.Comment: 20 pages, 7 figure
A Necklace Model for Vesicles Simulations in 2D
International audienceThe aim of this paper is to propose a new numerical model to simulate 2D vesicles interacting with a newtonian fluid. The inextensible membrane is modeled by a chain of circular rigid particles which are maintained in cohesion by using two different type of forces. First, a spring force is imposed between neighboring particles in the chain. Second, in order to model the bending of the membrane, each triplet of successive particles is submitted to an angular force. Numerical simulations of vesicles in shear flow have been run using Finite Element Method and the FreeFem++[1] software. Exploring different ratios of inner and outer viscosities, we recover the well known "Tank-Treading" and "Tumbling" motions predicted by theory and experiments. Moreover, for the first time, 2D simulations of the "Vacillating-Breathing" regime predicted by theory in [2] and observed experimentally in [3] are done without special ingredient like for example thermal fluctuations used in [4]
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
In this review, we describe and analyze a mesoscale simulation method for
fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now
called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an
ensemble of point particles. The multi-particle collisions are performed by
grouping particles in collision cells, and mass, momentum, and energy are
locally conserved. This simulation technique captures both full hydrodynamic
interactions and thermal fluctuations. The first part of the review begins with
a description of several widely used MPC algorithms and then discusses
important features of the original SRD algorithm and frequently used
variations. Two complementary approaches for deriving the hydrodynamic
equations and evaluating the transport coefficients are reviewed. It is then
shown how MPC algorithms can be generalized to model non-ideal fluids, and
binary mixtures with a consolute point. The importance of angular-momentum
conservation for systems like phase-separated liquids with different
viscosities is discussed. The second part of the review describes a number of
recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of
viscoelastic fluids
Study of charmonium production in b -hadron decays and first evidence for the decay Bs0
Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32
- …
