1,282 research outputs found
myExperiment: An ontology for e-Research
myExperiment describes itself as a "Social Virtual Research Environment" that provides the ability to share Research Objects (ROs) over a social infrastructure to facilitate actioning of research. The myExperiment Ontology is a logical representation of the data model used by this environment, allowing its data to be published in a standard RDF format, whilst providing a generic extensible framework that can be reused by similar projects. ROs are data structures designed to semantically enhance research publications by capturing and preserving the research method so that it can be reproduced in the future. This paper provides some motivation for an RO specification and briefly considers how existing domain-specifific ontologies might be integrated. It concludes by discussing the future direction of the myExperiment Ontology and how it will best support these ROs
Conceptual Linking: Ontology-based Open Hypermedia
This paper describes the attempts of the COHSE project to define and deploy a Conceptual Open Hypermedia Service. Consisting of • an ontological reasoning service which is used to represent a sophisticated conceptual model of document terms and their relationships; • a Web-based open hypermedia link service that can offer a range of different link-providing facilities in a scalable and non-intrusive fashion; and integrated to form a conceptual hypermedia system to enable documents to be linked via metadata describing their contents and hence to improve the consistency and breadth of linking of WWW documents at retrieval time (as readers browse the documents) and authoring time (as authors create the documents)
Scientific Social Objects: The Social Objects and Multidimensional Network of the myExperiment Website
Scientific research is increasingly conducted digitally and online, and consequently we are seeing the emergence of new digital objects shared as part of the conduct and discourse of science. These Scientific Social Objects are more than lumps of domain-specific data: they may comprise multiple components which can also be shared separately and independently, and some contain descriptions of scientific processes from which new objects will be generated. Using the myExperiment social website as a case study we explore Scientific Social Objects and discuss their evolution
Conceptual Linking: Ontology-based Open Hypermedia
This paper describes the attempts of the COHSE project to define and deploy a Conceptual Open Hypermedia Service. Consisting of • an ontological reasoning service which is used to represent a sophisticated conceptual model of document terms and their relationships; • a Web-based open hypermedia link service that can offer a range of different link-providing facilities in a scalable and non-intrusive fashion; and integrated to form a conceptual hypermedia system to enable documents to be linked via metadata describing their contents and hence to improve the consistency and breadth of linking of WWW documents at retrieval time (as readers browse the documents) and authoring time (as authors create the documents)
Research Objects: Towards Exchange and Reuse of Digital Knowledge
What will researchers be publishing in the future? Whilst there is little question that the Web will be the publication platform, as scholars move away from paper towards digital content, there is a need for mechanisms that support the production of self-contained units of knowledge and facilitate the publication, sharing and reuse of such entities. In this paper we discuss the notion of research objects, semantically rich aggregations of resources, that possess some scientifi?c intent or support some research objective. We present a number of principles that we expect such objects and their associated services to follow
An Authorisation Scenario for S-OGSA
The Semantic Grid initiative aims to exploit knowledge in the Grid to increase the automation, interoperability and flexibility of Grid middleware and applications. To bring a principled approach to developing Semantic Grid Systems, and to outline their core capabilities and behaviors, we have devised a reference Semantic Grid Architecture called S-OGSA. We present the implementation of an S-OGSA observant semantically-enabled Grid authorization scenario, which demonstrates two aspects: 1) the roles of different middleware components, be them semantic or non-semantic, and 2) the utility of explicit semantics for undertaking an essential activity in the Grid: resource access control
Science Bots: a Model for the Future of Scientific Computation?
As a response to the trends of the increasing importance of computational
approaches and the accelerating pace in science, I propose in this position
paper to establish the concept of "science bots" that autonomously perform
programmed tasks on input data they encounter and immediately publish the
results. We can let such bots participate in a reputation system together with
human users, meaning that bots and humans get positive or negative feedback by
other participants. Positive reputation given to these bots would also shine on
their owners, motivating them to contribute to this system, while negative
reputation will allow us to filter out low-quality data, which is inevitable in
an open and decentralized system.Comment: WWW 2015 Companion, May 18-22, 2015, Florence, Ital
S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid
The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently
Managing semantic Grid metadata in S-OGSA
Grid resources such as data, services, and equipment, are increasingly being annotated with descriptive metadata that facilitates their discovery and their use in the context of Virtual Organizations (VO). Making such growing body of metadata explicit and available to Grid services is key to the success of the VO paradigm. In this paper we present a model and management architecture for Semantic Bindings, i.e., firstclass Grid entities that encapsulate metadata on the Grid and make it available through predictable access patterns. The model is at the core of the S-OGSA reference architecture for the Semantic Grid
Selection by pairwise comparisons with limited resources
We analyze different methods of sorting and selecting a set of objects by
their intrinsic value, via pairwise comparisons whose outcome is uncertain.
After discussing the limits of repeated Round Robins, two new methods are
presented: The {\it ran-fil} requires no previous knowledge on the set under
consideration, yet displaying good performances even in the least favorable
case. The {\it min-ent} method sets a benchmark for optimal dynamic tournaments
design.Comment: 10 pages, 3 fig
- …
