1,951 research outputs found

    Ab initio prediction of Boron compounds arising from Borozene: Structural and electronic properties

    Get PDF
    Structure and electronic properties of two unusual boron clusters obtained by fusion of borozene rings has been studied by means of first principles calculations, based on the generalized-gradient approximation of the density functional theory, and the semiempirical tight-binding method was used for the transport calculations. The role of disorder has also been considered with single vacancies and substitutional atoms. Results show that the pure boron clusters are topologically planar and characterized by (3c-2e) bonds, which can explain, together with the aromaticity (estimated by means of NICS), the remarkable cohesive energy values obtained. Such feature makes these systems competitive with the most stable boron clusters to date. On the contrary, the introduction of impurities compromises stability and planarity in both cases. The energy gap values indicate that these clusters possess a semiconducting character, while when the larger system is considered, zero-values of the density of states are found exclusively within the HOMO-LUMO gap. Electron transport calculations within the Landauer formalism confirm these indications, showing semiconductor-like low bias differential conductance for these stuctures. Differences and similarities with Carbon clusters are highlighted in the discussion.Comment: 10 pages, 2 tables, 5 figure

    Influence of a knot on the strength of a polymer strand

    Full text link
    Many experiments have been done to determine the relative strength of different knots, and these show that the break in a knotted rope almost invariably occurs at a point just outside the `entrance' to the knot. The influence of knots on the properties of polymers has become of great interest, in part because of their effect on mechanical properties. Knot theory applied to the topology of macromolecules indicates that the simple trefoil or `overhand' knot is likely to be present with high probability in any long polymer strand. Fragments of DNA have been observed to contain such knots in experiments and computer simulations. Here we use {\it ab initio} computational methods to investigate the effect of a trefoil knot on the breaking strength of a polymer strand. We find that the knot weakens the strand significantly, and that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    A vibrational circular dichroism implementation within a Slater-type-orbital based density functional framework and its application to hexa- and hepta-helicenes

    Get PDF
    We describe the implementation of the rotational strengths for vibrational circular dichroism (VCD) in the Slater-type orbital based Amsterdam Density Functional (ADF) package. We show that our implementation, which makes use of analytical derivative techniques and London atomic orbitals, yields origin independent rotational strengths. The basis set dependence in the particular case of Slater-type basis functions is also discussed. It turns out that the triple zeta STO basis sets with one set of polarization functions (TZP) are adequate for VCD calculations. The origin- dependence of the atomic axial tensors is checked by a distributed origin gauge implementation. The distributed and common origin gauge implementations yield virtually identical atomic axial tensors with the Slater-type basis sets employed here, proving that our implementation yields origin independent rotational strengths. We verify the implementation for a set of benchmark molecules, for which the dependence of the VCD spectra on the particular choice of the exchange–correlation functional is studied. The pure functionals BP86 and OLYP show a particularly good performance. Then, we apply this approach to study the VCD spectra of hexa- and hepta- helicenes. In particular we focus on relationships between the sign of the rotational strengths of the two helicenes

    A computational study of the heterogeneous synthesis of hydrazine on Co3Mo3N

    Get PDF
    Periodic and molecular density functional theory calculations have been applied to elucidate the associative mechanism for hydrazine and ammonia synthesis in the gas phase and hydrazine formation on Co3Mo3N. We find that there are two activation barriers for the associative gas phase mechanism with barriers of 730 and 658 kJ/mol, corresponding to a hydrogenation step from N2 to NNH2 and H2NNH2 to H3NNH3, respectively. The second step of the mechanism is barrierless and an important intermediate, NNH2, can also readily form on Co3Mo3N surfaces via the Eley–Rideal chemisorption of H2 on a pre-adsorbed N2 at nitrogen vacancies. Based on this intermediate a new heterogeneous mechanism for hydrazine synthesis is studied. The highest relative barrier for this heterogeneous catalysed process is 213 kJ/mol for Co3Mo3N containing nitrogen vacancies, clearly pointing towards a low-energy process for the synthesis of hydrazine via a heterogeneous catalysis route

    Density functional theory studies of MTSL nitroxide side chain conformations attached to an activation loop

    Get PDF
    A quantum-mechanical (QM) method rooted on density functional theory (DFT) linked to the Stochastic Liouville equation (SLE) in the Fokker Planck (FP) form has been employed for the first time to sample the methane-thiosulfonate spin label (MTSL) conformational space attached to the Aurora-A kinase activation loop and to calculate the EPR spectrum. The features of the calculated energy surface allowed us to describe the system in a limited number of rotamers stabilized by interactions of the MTSL side chain and neighbouring residues. The relevant magnetic parameters and the electron paramagnetic resonance (EPR) spectrum were subsequently calculated from the trajectories of the spin probe in the protein environment. The comparison between theoretical and experimental continuous wave (CW) EPR spectra revealed some small differences in the EPR line shape which arises from the combinations of g- and A-values obtained from the conformations selected. The theoretical approach adopted in this work can be used to recognise the contribution of MTSL rotamers to the EPR spectrum in order to help extract structural/dynamics properties of protein from the experimental data

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    Crystal and Molecular Structure and DFT Calculations of the Steroidal Oxime 6E-Hydroximino-androst-4-ene-3,17-dione (C<sub>19</sub>H<sub>25</sub>NO<sub>3</sub>) a Molecule with Antiproliferative Activity

    Get PDF
    The single crystal X-ray structure of the novel steroid derivative, 6E-hydroximino-androst-4-ene-3,17-dione ( C19H25NO3) (code name RB-499), possessing antiproliferative activity against various cell lines is presented. The analysis produced the following results: chemical formula C19H25NO3; Mr = 315.40; crystals are orthorhombic space group P212121 with Z = 4 molecules per unit cell with a = 6.2609(2), b = 12.5711(4), c = 20.0517(4) Å,Vc = 1578.18(7) Å3, crystal density Dc = 1.327 g/cm³. Structure determination was performed by direct methods, Fourier and full-matrix least-squares refinement. Hydrogens were located in the electron density and refined in position with isotropic thermal parameters. The final R-index was 0.0324for 3140 reflections with I > 2σ and 308 parameters. The Absolute Structure Parameter − 0.07(5) confirms the correct allocation of the absolute configuration. The presence of the double bond C=O at position 3 in Ring A has caused a distortion from the usual chair conformation and created an unusual distorted sofa conformation folded across an approximate m-plane through C(1)–C(4). Ring B is a distorted chair, its conformation being influenced by the presence of the C(6)=N(6)–O(6)H group in position 6. Ring C is a symmetrical chair. Ring D exhibits both a distorted mirror symmetry conformation [influenced by the C(17)=O(17) group] and a distorted twofold conformation. DFT calculations indicated some degree of flexibility in rings A, C and D with ring A showing the greatest variation in torsion angles. The crystal packing is governed by H-bonds involving O(3), O(6) and O(17). DFT calculations of bond distances and angles, optimized at the B3LYP/6–31++G(d,p) level, were in good agreement with the X-ray structure
    corecore