96 research outputs found

    Next Generation-Targeted Amplicon Sequencing (NG-TAS): an optimised protocol and computational pipeline for cost-effective profiling of circulating tumour DNA

    Get PDF
    Cancer; Computational pipeline; Deep sequencingCàncer; Segmentació computacional; SeqüenciacióCáncer; Segmentación computacional; SecuenciaciónCirculating tumour DNA (ctDNA) detection and monitoring have enormous potential clinical utility in oncology. We describe here a fast, flexible and cost-effective method to profile multiple genes simultaneously in low input cell-free DNA (cfDNA): Next Generation-Targeted Amplicon Sequencing (NG-TAS). We designed a panel of 377 amplicons spanning 20 cancer genes and tested the NG-TAS pipeline using cell-free DNA from two HapMap lymphoblastoid cell lines. NG-TAS consistently detected mutations in cfDNA when mutation allele fraction was > 1%. We applied NG-TAS to a clinical cohort of metastatic breast cancer patients, demonstrating its potential in monitoring the disease. The computational pipeline is available at https://github.com/cclab-brca/NGTAS_pipelin

    Next Generation-Targeted Amplicon Sequencing (NG-TAS): an optimised protocol and computational pipeline for cost-effective profiling of circulating tumour DNA.

    No full text
    Circulating tumour DNA (ctDNA) detection and monitoring have enormous potential clinical utility in oncology. We describe here a fast, flexible and cost-effective method to profile multiple genes simultaneously in low input cell-free DNA (cfDNA): Next Generation-Targeted Amplicon Sequencing (NG-TAS). We designed a panel of 377 amplicons spanning 20 cancer genes and tested the NG-TAS pipeline using cell-free DNA from two HapMap lymphoblastoid cell lines. NG-TAS consistently detected mutations in cfDNA when mutation allele fraction was > 1%. We applied NG-TAS to a clinical cohort of metastatic breast cancer patients, demonstrating its potential in monitoring the disease. The computational pipeline is available at https://github.com/cclab-brca/NGTAS_pipeline .This research was supported with funding from Cancer Research UK Cancer Research UK (C37096/A16673). MG has been supported by a Genentech research grant (CLL-010907) awarded to the Caldas Laboratory. MC has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 66006

    Phase II Study of Arginine Deprivation Therapy With Pegargiminase in Patients With Relapsed Sensitive or Refractory Small-cell Lung Cancer.

    Get PDF
    BACKGROUND: Pre-clinical studies indicated that arginine-deprivation therapy using pegylated arginine deiminase (pegargiminase, ADI-PEG 20) may be effective in patients with argininosuccinate synthetase 1 (ASS1)-deficient small-cell lung cancer (SCLC). PATIENTS AND METHODS: Patients were enrolled into either a 'sensitive' disease cohort (≥ 90 days response to first-line chemotherapy) or a 'refractory' disease cohort (progression while on chemotherapy or < 90 days afterwards or ≥ third-line treatment). Patients received weekly intramuscular pegargiminase, 320 IU/m2 (36.8 mg/m2), until unacceptable toxicity or disease progression. The primary endpoint was tumor response assessed by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 with secondary endpoints including tolerability, pharmacodynamics, and immunogenicity. RESULTS: Between January 2011 and January 2014, 22 patients were enrolled: 9 in the sensitive disease cohort and 13 in the refractory disease cohort. At a pre-planned interim analysis, the best overall response observed was stable disease in 2 patients in each cohort (18.2%). Owing to the lack of response and slow accrual in the sensitive disease cohort, the study was terminated early. Pegargiminase treatment was well-tolerated with no unexpected adverse events or discontinuations. CONCLUSION: Although pegargiminase monotherapy in SCLC failed to meet its primary endpoint of RECIST-confirmed responses, more recent molecular stratification, including MYC status, may provide new opportunities moving forward

    Drug-induced amino acid deprivation as strategy for cancer therapy

    Full text link

    Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma

    Get PDF

    Triggers for Change

    Full text link
    What triggers organisational change? A recent UK survey of 200 companies suggests that the trigger is more likely to be a crisis than a positive response to a perceived opportunity, or in order to pre‐empt threats. The observed change initiatives did, however, follow current wisdom associated with total quality management perspectives, and customer awareness. A minority of the changes focused on “siege mentality” strategies, slimming the company to its barest core. The authors conclude by asking whether UK companies have the courage, while dealing with present crises, not to destroy the “excellence” path to a profitable long‐term future.</jats:p
    corecore