350 research outputs found
Recommended from our members
Remarkable dynamics of nanoparticles in the urban atmosphere
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health
Recommended from our members
Interpretation of particle number size distributions measured across an urban area during the FASTER campaign
Abstract. Particle number size distributions have been measured simultaneously by scanning mobility particle sizers (SMPSs) at five sites in central London for a 1 month campaign in January–February 2017. These measurements were accompanied by condensation particle counters (CPCs) to measure total particle number count at four of the sites and Aethalometersmeasuringblackcarbon(BC)atfivesites.The spatialdistributionandinter-relationshipsoftheparticlesize distribution and SMPS total number counts with CPC total number counts and black carbon measurements have been analysed in detail as well as variations in the size distributions. One site (Marylebone Road) was in a street canyon with heavy traffic, one site (Westminster University) was on a rooftop adjacent to the Marylebone Road sampler, and a further sampler was located at Regent’s University within a major park to the north of Marylebone Road. A fourth sampler was located nearby at 160m above ground level on the BT tower and a fifth sampler was located 4km to the west of the main sampling region at North Kensington. Consistent with earlier studies it was found that the mode in the size distribution had shifted to smaller sizes at the Regent’s University (park) site, the mean particle shrinkage rate being 0.04nms−1 with slightly lower values at low wind speeds and some larger values at higher wind speeds. There was evidence of complete evaporation of the semi-volatile nucleation mode under certain conditions at the elevated BT Tower site. While the SMPS total count and black carbon showed typical traffic-dominated diurnal profiles, the
CPC count data typically peaked during night-time as did CPC/SMPS and CPC/BC ratios. This is thought to be due to the presence of high concentrations of small particles (2.5–15nm diameter) probably arising from condensational growth from traffic emissions during the cooler night-time conditions. Such behaviour was most marked at the Regent’s University and Westminster University sites and less so at Marylebone Road, while at the elevated BT Tower site the ratio of particle number(CPC) to black carbon peaked during the morning rush hour and not at night-time, unlike the other sites. An elevation in nucleation mode particles associated with winds from the west and WSW sector was concluded to result from emissions from London Heathrow Airport, despite a distance of 22km from the central London sites
Recommended from our members
Sources and contributions of wood smoke during winter in London: assessing local and regional influences
Determining the contribution of wood smoke to air
pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass
smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and KC were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included
contributions from secondary organic aerosols, primary
biogenic and cooking sources. Source apportionment
of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions from biomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μg
A new hammer to crack an old nut : interspecific competitive resource capture by plants is regulated by nutrient supply, not climate
Peer reviewedPublisher PD
Population-Level Effects of Human Papillomavirus Vaccination Programs on Infections with Nonvaccine Genotypes
We analyzed human papillomavirus (HPV) prevalences during prevaccination and postvaccination periods to consider possible changes in nonvaccine HPV genotypes after introduction of vaccines that confer protection against 2 high-risk types, HPV16 and HPV18. Our meta-analysis included 9 studies with data for 13,886 girls and women ≤19 years of age and 23,340 women 20–24 years of age. We found evidence of cross-protection for HPV31 among the younger age group after vaccine introduction but little evidence for reductions of HPV33 and HPV45. For the group this same age group, we also found slight increases in 2 nonvaccine high-risk HPV types (HPV39 and HPV52) and in 2 possible high-risk types (HPV53 and HPV73). However, results between age groups and vaccines used were inconsistent, and the increases had possible alternative explanations; consequently, these data provided no clear evidence for type replacement. Continued monitoring of these HPV genotypes is important
Receptor modelling of both particle composition and size distribution from a background site in London, UK
Positive Matrix Factorisation (PMF) analysis was applied to PM10 chemical composition and particle Number Size Distribution (NSD) data measured at an urban background site (North Kensington) in London, UK for the whole of 2011 and 2012. The PMF analyses revealed six and four factors respectively which described seven sources or aerosol types. These included Nucleation, Traffic, Diffuse Urban, Secondary, Fuel Oil, Marine and Non-Exhaust/Crustal sources. Diffuse Urban, Secondary and Traffic sources were identified by both the chemical composition and particle number size distribution analysis, but a Nucleation source was identified only from the particle Number Size Distribution dataset. Analysis of the PM10 chemical composition dataset revealed Fuel Oil, Marine, Non-Exhaust Traffic/Crustal sources which were not identified from the number size distribution data. The two methods appear to be complementary, as the analysis of the PM10 chemical composition data is able to distinguish components contributing largely to particle mass whereas the number particle size distribution dataset is more effective for identifying components making an appreciable contribution to particle number. Analysis was also conducted on the combined chemical composition and number size distribution dataset revealing five factors representing Diffuse Urban, Nucleation, Secondary, Aged Marine and Traffic sources. However, the combined analysis appears not to offer any additional power to discriminate sources above that of the aggregate of the two separate PMF analyses. Day-of-the-week and month-of-the-year associations of the factors proved consistent with their assignment to source categories, and bivariate polar plots which examined the wind directional and wind speed association of the different factors also proved highly consistent with their inferred sources
Emulation and Sensitivity Analysis of the Community Multiscale Air Quality Model for a UK Ozone Pollution Episode
Gaussian process emulation techniques have been used with the Community Multiscale Air Quality model, simulating the effects of input uncertainties on ozone and NO2 output, to allow robust global sensitivity analysis (SA). A screening process ranked the effect of perturbations in 223 inputs, isolating the 30 most influential from emissions, boundary conditions (BCs), and reaction rates. Community Multiscale Air Quality (CMAQ) simulations of a July 2006 ozone pollution episode in the UK were made with input values for these variables plus ozone dry deposition velocity chosen according to a 576 point Latin hypercube design. Emulators trained on the output of these runs were used in variance-based SA of the model output to input uncertainties. Performing these analyses for every hour of a 21 day period spanning the episode and several days on either side allowed the results to be presented as a time series of sensitivity coefficients, showing how the influence of different input uncertainties changed during the episode. This is one of the most complex models to which these methods have been applied, and here, they reveal detailed spatiotemporal patterns of model sensitivities, with NO and isoprene emissions, NO2 photolysis, ozone BCs, and deposition velocity being among the most influential input uncertainties
Molecular cloning and analysis of functional envelope genes from human immunodeficiency virus type 1 sequence subtypes A through G
Recombinant HIV Envelope Proteins Fail to Engage Germline Versions of Anti-CD4bs bNAbs
Vaccine candidates for HIV-1 so far have not been able to elicit broadly neutralizing antibodies (bNAbs) although they express the epitopes recognized by bNAbs to the HIV envelope glycoprotein (Env). To understand whether and how Env immunogens interact with the predicted germline versions of known bNAbs, we screened a large panel (N:56) of recombinant Envs (from clades A, B and C) for binding to the germline predecessors of the broadly neutralizing anti-CD4 binding site antibodies b12, NIH45-46 and 3BNC60. Although the mature antibodies reacted with diverse Envs, the corresponding germline antibodies did not display Env-reactivity. Experiments conducted with engineered chimeric antibodies combining the mature and germline heavy and light chains, respectively and vice-versa, revealed that both antibody chains are important for the known cross-reactivity of these antibodies. Our results also indicate that in order for b12 to display its broad cross-reactivity, multiple somatic mutations within its VH region are required. A consequence of the failure of the germline b12 to bind recombinant soluble Env is that Env-induced B-cell activation through the germline b12 BCR does not take place. Our study provides a new explanation for the difficulties in eliciting bNAbs with recombinant soluble Env immunogens. Our study also highlights the need for intense efforts to identify rare naturally occurring or engineered Envs that may engage the germline BCR versions of bNAbs
- …
