147 research outputs found
Psychologists’ Diagnostic Processes during a Diagnostic Interview
In mental health care, psychologists assess clients’ complaints, analyze underlying problems, and identify causes for these problems, to make treatment decisions. We present a study on psychologists’ diagnostic processes, in which a mixed-method approach was employed. We aimed to identify a common structure in the diagnostic processes of different psychologists. We engaged an actor to simulate a client. Participants were asked to perform a diagnostic interview with this “client”. This interview was videotaped. Afterwards participants first wrote a report and then were asked to review their considerations during the interview. We found that psychologists were comprehensive in their diagnostic interviews. They addressed the client’s complaints, possible classifications, explanations, and treatments. They agreed about the classifications, more than about causal factors and treatment options. The content of the considerations differed between the interviews and the reports written afterwards. We conclude that psychologists continuously shifted between diagnostic activities and revised their decisions in line with the dynamics of the interview situatio
Structure-reactivity correlations in Vanadium containing catalysts for the one-pot glycerol oxidehydration to acrylic acid
[EN] The design of suitable catalysts for the one-pot conversion of glycerol into acrylic acid (AA) is a complex matter, as only fine-tuning of the redox and acid properties makes it possible to obtain significant yields of AA. However, fundamental understanding behind the catalytic phenomenon is still unclear. Structure-reactivity correlations are clearly behind these results, and acid sites are involved in the dehydration of glycerol into acrolein with vanadium as the main (or only) redox element. For the first time, we propose an in-depth study to shed light on the molecular-level relations behind the overall catalytic results shown by several types of V-containing catalysts. Different multifunctional catalysts were synthesized, characterized (>X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, temperature-programmed reduction, and temperature-programmed desorption of ammonia), and tested in a flow reactor. Combining the obtained results with those acquired from an in situ FTIR spectroscopy study with acrolein (a reaction intermediate), it was possible to draw conclusions on the role played by the various physicochemical features of the different oxides in terms of the adsorption, surface reactions, and desorption of the reagents and reaction products.The Instituto de Tecnologia Quimica thanks the Spanish Government-MINECO projects (CTQ2015-68951-C3-1-R and SEV-2012-0267). CIRI Energia e Ambiente (University of Bologna) is acknowledged for a Ph.D. grant to A.C. Consorzio INSTM (Firenze) is acknowledged for a Ph.D. grant to C.B.Chieregato, A.; Bandinelli, C.; Concepción Heydorn, P.; Soriano Rodríguez, MD.; Puzzo, F.; Basile, F.; Cavani, F.... (2017). Structure-reactivity correlations in Vanadium containing catalysts for the one-pot glycerol oxidehydration to acrylic acid. ChemSusChem. 10(1):234-244. https://doi.org/10.1002/cssc.201600954S234244101T. Ohara T. Sato N. Shimizu G. Prescher H. Schwind O. Weiberg K. Marten H. Greim Ullmann's Encyclopedia of Industrial Chemistry 2011Beerthuis, R., Rothenberg, G., & Shiju, N. R. (2015). Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 17(3), 1341-1361. doi:10.1039/c4gc02076fSattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436Lanzafame, P., Centi, G., & Perathoner, S. (2014). Evolving scenarios for biorefineries and the impact on catalysis. Catalysis Today, 234, 2-12. doi:10.1016/j.cattod.2014.03.022Katryniok, B., Paul, S., & Dumeignil, F. (2013). Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis, 3(8), 1819-1834. doi:10.1021/cs400354pZhang, J., Zhao, Y., Pan, M., Feng, X., Ji, W., & Au, C.-T. (2010). Efficient Acrylic Acid Production through Bio Lactic Acid Dehydration over NaY Zeolite Modified by Alkali Phosphates. ACS Catalysis, 1(1), 32-41. doi:10.1021/cs100047pChu, H. S., Ahn, J.-H., Yun, J., Choi, I. S., Nam, T.-W., & Cho, K. M. (2015). Direct fermentation route for the production of acrylic acid. Metabolic Engineering, 32, 23-29. doi:10.1016/j.ymben.2015.08.005Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem., 16(3), 950-963. doi:10.1039/c3gc41935eZhou, C. H., Zhao, H., Tong, D. S., Wu, L. M., & Yu, W. H. (2013). Recent Advances in Catalytic Conversion of Glycerol. Catalysis Reviews, 55(4), 369-453. doi:10.1080/01614940.2013.816610Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168J. L. Dubois Arkema Fr. WO 2007090991 2007J. L. Dubois Arkema Fr. WO 2008007002 2008Wang, F., Xu, J., Dubois, J.-L., & Ueda, W. (2010). Catalytic Oxidative Dehydration of Glycerol over a Catalyst with Iron Oxide Domains Embedded in an Iron Orthovanadate Phase. ChemSusChem, 3(12), 1383-1389. doi:10.1002/cssc.201000245Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622eDeleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., Concepción, P., … López Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045Chieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024Possato, L. G., Cassinelli, W. H., Garetto, T., Pulcinelli, S. H., Santilli, C. V., & Martins, L. (2015). One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts. Applied Catalysis A: General, 492, 243-251. doi:10.1016/j.apcata.2014.12.049Pestana, C. F. M., Guerra, A. C. O., Ferreira, G. B., Turci, C. C., & Mota, C. J. A. (2013). Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta. Journal of the Brazilian Chemical Society, 24(1), 100-105. doi:10.1590/s0103-50532013000100014Feng, X., Yao, Y., Su, Q., Zhao, L., Jiang, W., Ji, W., & Au, C.-T. (2015). Vanadium pyrophosphate oxides: The role of preparation chemistry in determining renewable acrolein production from glycerol dehydration. Applied Catalysis B: Environmental, 164, 31-39. doi:10.1016/j.apcatb.2014.08.049Wang, F., Dubois, J.-L., & Ueda, W. (2009). Catalytic dehydration of glycerol over vanadium phosphate oxides in the presence of molecular oxygen. Journal of Catalysis, 268(2), 260-267. doi:10.1016/j.jcat.2009.09.024Chieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307vPastore, H. O., Coluccia, S., & Marchese, L. (2005). POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts. Annual Review of Materials Research, 35(1), 351-395. doi:10.1146/annurev.matsci.35.103103.120732Dummer, N. F., Weng, W., Kiely, C., Carley, A. F., Bartley, J. K., Kiely, C. J., & Hutchings, G. J. (2010). Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General, 376(1-2), 47-55. doi:10.1016/j.apcata.2009.10.004Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465kConcepción, P., Blasco, T., López Nieto, J. M., Vidal-Moya, A., & Martı́nez-Arias, A. (2004). Preparation, characterization and reactivity of V- and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane. Microporous and Mesoporous Materials, 67(2-3), 215-227. doi:10.1016/j.micromeso.2003.11.005Ross-Medgaarden, E. I., & Wachs, I. E. (2007). Structural Determination of Bulk and Surface Tungsten Oxides with UV−vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy. The Journal of Physical Chemistry C, 111(41), 15089-15099. doi:10.1021/jp074219cWachs, I. E., Deo, G., Weckhuysen, B. M., Andreini, A., Vuurman, M. A., Boer, M. de, & Amiridis, M. D. (1996). Selective Catalytic Reduction of NO with NH3over Supported Vanadia Catalysts. Journal of Catalysis, 161(1), 211-221. doi:10.1006/jcat.1996.0179Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 208(1), 139-149. doi:10.1006/jcat.2002.3570Grant, J. T., Carrero, C. A., Love, A. M., Verel, R., & Hermans, I. (2015). Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5(10), 5787-5793. doi:10.1021/acscatal.5b01679Cavani, F., Luciani, S., Esposti, E. D., Cortelli, C., & Leanza, R. (2010). Surface Dynamics of A Vanadyl Pyrophosphate Catalyst forn-Butane Oxidation to Maleic Anhydride: An In Situ Raman and Reactivity Study of the Effect of the P/V Atomic Ratio. Chemistry - A European Journal, 16(5), 1646-1655. doi:10.1002/chem.200902017Cavani, F., De Santi, D., Luciani, S., Löfberg, A., Bordes-Richard, E., Cortelli, C., & Leanza, R. (2010). Transient reactivity of vanadyl pyrophosphate, the catalyst for n-butane oxidation to maleic anhydride, in response to in-situ treatments. Applied Catalysis A: General, 376(1-2), 66-75. doi:10.1016/j.apcata.2009.10.037Caldarelli, A., Bañares, M. A., Cortelli, C., Luciani, S., & Cavani, F. (2014). An investigation on surface reactivity of Nb-doped vanadyl pyrophosphate catalysts by reactivity experiments and in situ Raman spectroscopy. Catal. Sci. Technol., 4(2), 419-427. doi:10.1039/c3cy00705gConcepción, P., & López Nieto, J. . (2001). Novel synthesis of a vanadium–cobalt aluminophosphate molecular sieve of AEI structure (VCoAPO-18) and its catalytic behaviour for the ethane oxidation. Catalysis Communications, 2(11-12), 363-367. doi:10.1016/s1566-7367(01)00061-9Lourenço, J. P., Macedo, M. I., & Fernandes, A. (2012). Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of Glycerol. Catalysis Communications, 19, 105-109. doi:10.1016/j.catcom.2011.12.029Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021Zhang, H., Hu, Z., Huang, L., Zhang, H., Song, K., Wang, L., … Tang, Y. (2015). Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catalysis, 5(4), 2548-2558. doi:10.1021/cs5019953Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376Concepción, P., Corma, A., López Nieto, J. M., & Pérez-Pariente, J. (1996). Selective oxidation of hydrocarbons on V- and/or Co-containing aluminophosphate (MeAPO-5) using molecular oxygen. Applied Catalysis A: General, 143(1), 17-28. doi:10.1016/0926-860x(96)00068-3KAMIYA, Y., NISHIYAMA, H., YASHIRO, M., SATSUMA, A., & HATTORI, T. (2003). The Role of Bronsted and Lewis Acid Sites of Vanadyl Pyrophosphate Measured by Dimethylpyridine-temperature Programmed Desorption in the Selective Oxidation of Butane. Journal of the Japan Petroleum Institute, 46(1), 62-68. doi:10.1627/jpi.46.62Yoda, E., & Ootawa, A. (2009). Dehydration of glycerol on H-MFI zeolite investigated by FT-IR. Applied Catalysis A: General, 360(1), 66-70. doi:10.1016/j.apcata.2009.03.009Tichý, J. (1997). Oxidation of acrolein to acrylic acid over vanadium-molybdenum oxide catalysts. Applied Catalysis A: General, 157(1-2), 363-385. doi:10.1016/s0926-860x(97)00025-2Andrushkevich, T. V., & Popova, G. Y. (1991). Mechanism of heterogeneous oxidation of acrolein to acrylic acid. Russian Chemical Reviews, 60(9), 1023-1034. doi:10.1070/rc1991v060n09abeh001126López Nieto, J. M., Concepción, P., Dejoz, A., Knözinger, H., Melo, F., & Vázquez, M. I. (2000). Selective Oxidation of n-Butane and Butenes over Vanadium-Containing Catalysts. Journal of Catalysis, 189(1), 147-157. doi:10.1006/jcat.1999.2689Davydov, A. (2003). Molecular Spectroscopy of Oxide Catalyst Surfaces. doi:10.1002/0470867981Shee, D., & Deo, G. (2009). Adsorption and ODH reaction of alkane on sol–gel synthesized TiO2–WO3 supported vanadium oxide catalysts: In situ DRIFT and structure–reactivity study. Journal of Molecular Catalysis A: Chemical, 308(1-2), 46-55. doi:10.1016/j.molcata.2009.03.032Bhattacharyya, K., Varma, S., Tripathi, A. K., Bharadwaj, S. R., & Tyagi, A. K. (2009). Mechanistic Insight byin SituFTIR for the Gas Phase Photo-oxidation of Ethylene by V-Doped Titania and Nano Titania. The Journal of Physical Chemistry B, 113(17), 5917-5928. doi:10.1021/jp8103529Centi, G., Cavani, F., & Trifirò, F. (2001). Selective Oxidation by Heterogeneous Catalysis. Fundamental and Applied Catalysis. doi:10.1007/978-1-4615-4175-2Tichý, J., & Davydov, A. A. (1976). Interaction of acrolein with vanadium-molybdenum oxide catalyst surface. Collection of Czechoslovak Chemical Communications, 41(3), 834-838. doi:10.1135/cccc19760834Blasco, T., & Nieto, J. M. L. (1997). Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Applied Catalysis A: General, 157(1-2), 117-142. doi:10.1016/s0926-860x(97)00029-xPavarelli, G., Velasquez Ochoa, J., Caldarelli, A., Puzzo, F., Cavani, F., & Dubois, J.-L. (2015). A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol. ChemSusChem, 8(13), 2250-2259. doi:10.1002/cssc.201500095Centi, G., Cavani, F., & Trifirò, F. (2001). Control of the Surface Reactivity of Solid Catalysts. Fundamental and Applied Catalysis, 203-283. doi:10.1007/978-1-4615-4175-2_5Griffith, C. S., & Luca, V. (2004). Ion-Exchange Properties of Microporous Tungstates. Chemistry of Materials, 16(24), 4992-4999. doi:10.1021/cm049335
ChemInform Abstract: Catalytic Routes Towards Acrylic Acid, Adipic Acid and ε-Caprolactam Starting from Biorenewables
Carbon-Supported Copper for Gas-Phase Hydrogenation Catalysis
Fundamental studies in catalysis rely on well-defined catalyst materials and reactions. In this thesis we focused on the synthesis, characterization and performance of carbon-supported Cu-based materials in hydrogenation catalysis. The main aim was to investigate the effects of the Cu nanoparticle size, support interactions and metal oxide promotion, on the catalytic performance in three industrially-relevant gas-phase hydrogenation reactions, namely methanol synthesis by hydrogenation of CO and CO2, selective hydrogenation of butadiene in excess of propene, and hydrogenation of ethyl acetate to ethanol, a new reaction in our research group. In summary, the physicochemical phenomena involved in catalyst assembly were investigated on the nanometer scale for a series of carbon-supported Cu catalysts, which allowed us to prepare model catalysts with tailored structures. The work presented in this thesis showed that disentangling the effects of Cu particle size, supports and promoters, facilitated the establishment of structure-performance relationships in three important hydrogenation reactions. The advanced understanding of these relationships may assist in developing more active, selective and stable Cu-based hydrogenation catalysts, which may ultimately contribute to more efficient use of energy and materials resources
Synthesis of 2-substituted cis-8,cis-11,cis-14-eicosatrienoic acids, precursors for 2-substituted prostaglandins
- …
