1,103 research outputs found
Radiatively-Driven Outflows and Avoidance of Common-Envelope Evolution in Close Binaries
Recent work on Cygnus X-2 suggests that neutron-star or black-hole binaries
survive highly super-Eddington mass transfer rates without undergoing
common-envelope evolution. We suggest here that the accretion flows in such
cases are radiation pressure-dominated versions of the "ADIOS" picture proposed
by Blandford and Begelman (1999), in which almost all the mass is expelled from
large radii in the accretion disk. We estimate the maximum radius from which
mass loss is likely to occur, and show that common-envelope evolution is
probably avoided in any binary in which a main-sequence donor transfers mass on
a thermal timescale to a neutron star or black hole, even though the mass
transfer rate may reach values of 0.001 solar masses per year. This conclusion
probably applies also to donors expanding across the Hertzsprung gap, provided
that their envelopes are radiative. SS433 may be an example of a system in this
state.Comment: 4 pages, submitted to Astrophysical Journal Letters, 26 March 199
Hierarchical build-up of galactic bulges and the merging rate of supermassive binary black holes
The hierarchical build-up of galactic bulges should lead to the build-up of
present-day supermassive black holes by a mixture of gas accretion and merging
of supermassive black holes. The tight relation between black hole mass and
stellar velocity dispersion is thereby a strong argument that the supermassive
black holes in merging galactic bulges do indeed merge. Otherwise the ejection
of supermassive black holes by gravitational slingshot would lead to excessive
scatter in this relation. At high redshift the coalescence of massive black
hole binaries is likely to be driven by the accretion of gas in the major
mergers signposted by optically bright QSO activity. If massive black holes
only form efficiently by direct collapse of gas in deep galactic potential
wells with v_c > 100 km/s as postulated in the model of Kauffmann & Haehnelt
(2000) LISA expects to see event rates from the merging of massive binary black
holes of about 0.1-1 yr^{-1} spread over the redshift range 0 < z < 5. If,
however, the hierarchical build-up of supermassive black holes extends to
pre-galactic structures with significantly shallower potential wells event
rates may be as high as 10-100 yr^{-1} and will be dominated by events from
redshift z > 5.Comment: 8 pages, 4 postscript figures. Proceedings of the 4th International
LISA Symposium, Penn State University, 19-24 July 2002, ed. L S Fin
Absolute and convective instabilities of an inviscid compressible mixing layer: Theory and applications
This study aims to examine the effect of compressibility on unbounded and parallel shear flow linear instabilities. This analysis is of interest for industrial, geophysical, and astrophysical flows. We focus on the stability of a wavepacket as opposed to previous single-mode stability studies. We consider the notions of absolute and convective instabilities first used to describe plasma instabilities. The compressible-flow modal theory predicts instability whatever the Mach number. Spatial and temporal growth rates and Reynolds stresses nevertheless become strongly reduced at high Mach numbers. The evolution of disturbances is driven by Kelvin -Helmholtz instability that weakens in supersonic flows. We wish to examine the occurrence of absolute instability, necessary for the appearance of turbulent motions in an inviscid and compressible two-dimensional mixing layer at an arbitrary Mach number subject to a three-dimensional disturbance. The mixing layer is defined by a parametric family of mean-velocity and temperature profiles. The eigenvalue problem is solved with the help of a spectral method. We ascertain the effects of the distribution of temperature and velocity in the mixing layer on the transition between convective and absolute instabilities. It appears that, in most cases, absolute instability is always possible at high Mach numbers provided that the ratio of slow-stream temperature over fast-stream temperature may be less than a critical maximal value but the temporal growth rate present in the absolutely unstable zone remains small and tends to zero at high Mach numbers. The transition toward a supersonic turbulent regime is therefore unlikely to be possible in the linear theory. Absolute instability can be also present among low-Mach-number coflowing mixing layers provided that this same temperature ratio may be small, but nevertheless, higher than a critical minimal value. Temperature distribution within the mixing layer also has an effect on the growth rate, this diminishes when the slow stream is heated. These results are applied to the dynamics of mixing layers in the interstellar medium and to the dynamics of the heliopause, frontier between the interstellar medium, and the solar wind. (C) 2009 American Institute of Physics
IUE absorption studies of broad- and narrow-line gas in Seyfert galaxies
The interstellar medium of a galaxy containing an active nucleus may be profoundly affected by the high energy (X-ray, EUV) continuum flux emanating from the central source. The energetic source may photoionize the interstellar medium out to several kiloparsecs, thereby creating a global H II region. The International Ultraviolet Explorer (IUE) satellite has attempted to observe in several Seyfert galaxies (NGC 3516, NGC 4151, NGC 1068, 3C 120) the narrow absorption lines expected from such global H II regions. Instead, in two of the galaxies (NGC 3516, NGC 4151) broad, variable absorption lines at C IV lambda 1550, N V lambda 1240, and Si IV lambda 1400 were found, as well as weaker absorption features at O I lambda 1302 and C II lambda 1335. These features swamp any possible global H II region absorption. Such broad absorption features have previously been observed in IUE data, but their origin is still not well understood
Spherical Accretion
We compare different examples of spherical accretion onto a gravitating mass.
Limiting cases include the accretion of a collisionally dominated fluid and the
accretion of collisionless particles. We derive expressions for the accretion
rate and density profile for semi-collisional accretion which bridges the gap
between these limiting cases. Particle crossing of the Hill sphere during the
formation of the outer planets is likely to have taken place in the
semi-collisional regime.Comment: ApJ Letters, 3 page
Entropy "floor" and effervescent heating of intracluster gas
Recent X-ray observations of clusters of galaxies have shown that the entropy
of the intracluster medium (ICM), even at radii as large as half the virial
radius, is higher than that expected from gravitational processes alone. This
is thought to be the result of nongravitational processes influencing the
physical state of the ICM. In this paper, we investigate whether heating by a
central AGN can explain the distribution of excess entropy as a function of
radius. The AGN is assumed to inject buoyant bubbles into the ICM, which heat
the ambient medium by doing pdV work as they rise and expand. Several authors
have suggested that this "effervescent heating" mechanism could allow the
central regions of clusters to avoid the ``cooling catastrophe''. Here we study
the effect of effervescent heating at large radii. Our calculations show that
such a heating mechanism is able to solve the entropy problem. The only free
parameters of the model are the time-averaged luminosity and the AGN lifetime.
The results are mainly sensitive to the total energy injected into the cluster.
Our model predicts that the total energy injected by AGN should be roughly
proportional to the cluster mass. The expected correlation is consistent with a
linear relation between the mass of the central black hole(s) and the mass of
the cluster, which is reminiscent of the Magorrian relation between the black
hole and bulge mass.Comment: accepted for Ap
- …
