53 research outputs found
The immunology and genetics of resistance of sheep to Teladorsagia circumcincta
Teladorsagia circumcincta is one of the most economically important gastrointestinal nematode parasites of sheep in cool temperate regions, to which sheep show genetically-varying resistance to infection. This is a very common parasite and viable sheep production requires the extensive use of anthelmintic drugs. However, the emergence of drug-resistant parasites has stimulated the search for alternative control strategies to curb production losses. Lambs become infected soon after weaning and begin to control parasite burden within 8-10 weeks of continual infection. This control is an acquired characteristic mediated by the development of parasite-specific antibodies. This paper describes the immunology associated with resistance and susceptibility, focussing on differential T cell activation that regulates the production of specific effector mechanisms. It continues by summarizing the methods used to identify genes that could be exploited as molecular markers of selection for resistance. In particular it focusses on the link between understanding the molecular immunology of infection and the identification of candidate genes for selection
Candida glabrata Transcription Factor Rpn4 Mediates Fluconazole Resistance through Regulation of Ergosterol Biosynthesis and Plasma Membrane Permeability
Molecular characterization of Osh6p, an oxysterol binding protein homolog in the yeast Saccharomyces cerevisiae
Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6? exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.No Full Tex
Reverse Logistics for Return Management in Retail: A Systematic Literature Review from 2007 to 2016
- …
