160 research outputs found
Pre-existing autoimmunity is associated with increased severity of COVID-19: A retrospective cohort study using data from the National COVID Cohort Collaborative (N3C)
Identifying individuals with a higher risk of developing severe COVID-19 outcomes will inform targeted or more intensive clinical monitoring and management. To date, there is mixed evidence regarding the impact of pre-existing autoimmune disease (AID) diagnosis and/or immunosuppressant (IS) exposure on developing severe COVID-19 outcomes.A retrospective cohort of adults diagnosed with COVID-19 was created in the National COVID Cohort Collaborative enclave. Two outcomes, life-threatening disease, and hospitalization were evaluated by using logistic regression models with and without adjustment for demographics and comorbidities.Of the 2,453,799 adults diagnosed with COVID-19, 191,520 (7.81%) had a pre-existing AID diagnosis and 278,095 (11.33%) had a pre-existing IS exposure. Logistic regression models adjusted for demographics and comorbidities demonstrated that individuals with a pre-existing AID (OR = 1.13, 95% CI 1.09 - 1.17; P< 0.001), IS (OR= 1.27, 95% CI 1.24 - 1.30; P< 0.001), or both (OR = 1.35, 95% CI 1.29 - 1.40; P< 0.001) were more likely to have a life-threatening COVID-19 disease. These results were consistent when evaluating hospitalization. A sensitivity analysis evaluating specific IS revealed that TNF inhibitors were protective against life-threatening disease (OR = 0.80, 95% CI 0.66- 0.96; P=0.017) and hospitalization (OR = 0.80, 95% CI 0.73 - 0.89; P< 0.001).Patients with pre-existing AID, exposure to IS, or both are more likely to have a life-threatening disease or hospitalization. These patients may thus require tailored monitoring and preventative measures to minimize negative consequences of COVID-19
Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells
Immunosuppressive drugs in clinical transplantation are necessary to inhibit the immune response to donor antigens. Although they are effective in controlling acute rejection, they do not prevent long-term transplant loss from chronic rejection. In addition, immunosuppressive drugs have adverse side effects, including increased rate of infections and malignancies. Adoptive cell therapy with human Tregs represents a promising strategy for the induction of transplantation tolerance. Phase I/II clinical trials in transplanted patients are already underway, involving the infusion of Tregs alongside concurrent immunosuppressive drugs. However, it remains to be determined whether the presence of immunosuppressive drugs negatively impacts Treg function and stability. We tested in vitro and in vivo the effects of tacrolimus, mycophenolate and methylprednisolone (major ISDs used in transplantation) on ex vivo expanded, rapamycin-treated human Tregs. The in vitro results showed that these drugs had no effect on phenotype, function and stability of Tregs, although tacrolimus affected the expression of chemokine receptors and IL-10 production. However, viability and proliferative capacity were reduced in a dose-dependent manner by all the three drugs. The in vivo experiments using a humanized mouse model confirmed the in vitro results. However, treatment of mice with only rapamycin maintained the viability, function and proliferative ability of adoptively transferred Tregs. Taken together, our results suggest that the key functions of ex vivo expanded Tregs are not affected by a concurrent immunosuppressive therapy. However, the choice of the drug combination and their timing and dosing should be considered as an essential component to induce and maintain tolerance by Treg
Loss of CD4+ T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection
Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies
A deep intronic splice-altering AIRE variant causes APECED syndrome through antisense oligonucleotide-targetable pseudoexon inclusion
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a life-threatening monogenic autoimmune disorder primarily caused by biallelic deleterious variants in the autoimmune regulator (AIRE) gene. We prospectively evaluated 104 patients with clinically diagnosed APECED syndrome and identified 17 patients (16%) from 14 kindreds lacking biallelic AIRE variants in exons or flanking intronic regions; 15 had Puerto Rican ancestry. Through whole-genome sequencing, we identified a deep intronic AIRE variant (c.1504-818 G>A) cosegregating with the disease in all 17 patients. We developed a culture system of AIRE-expressing primary patient monocyte-derived dendritic cells and demonstrated that c.1504-818 G>A creates a cryptic splice site and activates inclusion of a 109-base pair frame-shifting pseudoexon. We also found low-level AIRE expression in patient-derived lymphoblastoid cell lines (LCLs) and confirmed pseudoexon inclusion in independent extrathymic AIRE-expressing cell lines. Through protein modeling and transcriptomic analyses of AIRE-transfected human embryonic kidney 293 and thymic epithelial cell 4D6 cells, we showed that this variant alters the carboxyl terminus of the AIRE protein, abrogating its function. Last, we developed an antisense oligonucleotide (ASO) that reversed pseudoexon inclusion and restored the normal AIRE transcript sequence in LCLs. Thus, our findings revealed c.1504-818 G>A as a founder APECED-causing AIRE variant in the Puerto Rican population and uncovered pseudoexon inclusion as an ASO-reversible genetic mechanism underlying APECED.This study used the high-performance computational capabilities of the Office of Cyber Infrastructure and Computational Biology (OCICB) High Performance Computing (HPC) cluster at the National Institute of Allergy and Infectious Diseases (NIAID) and the NIH HPC Biowulf cluster (http://hpc.nih.gov). This study was partially supported by the following organizations: Director of Intramural Research through the Clinical Center Genomics Opportunity; the Intramural Research Program of the NIAID, NIDDK, NICHD, NIEHS, NIAMS, and NHGRI (National Institutes of Health); and the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director under award number U01HG007672 (to V.S.). J.G. is funded by the Academy of Finland, Sigrid Juselius Foundation, Emil Aaltonen Foundation, Finnish Medical Foundation, HUS Helsinki University Hospital, and Stiftelsen Frimurare Barnhuset in Stockholm.Peer reviewe
Faculty Opinions recommendation of The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis.
Faculty Opinions recommendation of Estimated radiation exposure from medical imaging in hemodialysis patients.
Faculty Opinions recommendation of Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation.
- …
