1,303 research outputs found
Solid propellant rocket motor
The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure
Canadian Society for Exercise Physiology Position Paper: Resistance Training in Children and Adolescents
Many position stands and review papers have refuted the myths associated with
resistance training (RT) in children and adolescents. With proper training methods, RT
for children and adolescents can be relatively safe and improve overall health. The
objective of this position paper and review is to highlight research and provide
recommendations in aspects of RT that have not been extensively reported in the
pediatric literature. In addition to the well-documented increases in muscular strength and
endurance, RT has been used to improve function in pediatric patients with cystic
fibrosis, cerebral palsy and burn victims. Increases in children’s muscular strength have
been attributed primarily to neurological adaptations due to the disproportionately higher
increase in muscle strength than in muscle size. Although most studies using
anthropometric measures have not shown significant muscle hypertrophy in children,
more sensitive measures such as magnetic resonance imaging and ultrasound have
suggested hypertrophy may occur. There is no minimum age for RT for children.
However the training and instruction must be appropriate for children and adolescents
involving a proper warm-up, cool-down and an appropriate choice of exercises. It is
recommended that low-to-moderate intensity resistance should be utilized 2-3 times per
week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15
repetitions for 8-12 exercises. These exercises can include more advanced movements
such as Olympic style lifting, plyometrics and balance training, which can enhance
strength, power, co-ordination and balance. However specific guidelines for these more
advanced techniques need to be established for youth. In conclusion, a RT program that is
within a child’s or adolescent’s capacity, involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more
advanced or intense RT exercises which can lead to functional (i.e. muscular strength,
endurance, power, balance and co-ordination) and health benefits
Knee joint neuromuscular activation performance during muscle damage and superimposed fatigue
This study examined the concurrent effects of exercise-induced muscle damage and superimposed acute fatigue on the neuromuscular activation performance of the knee flexors of nine males (age: 26.7 ± 6.1yrs; height 1.81 ± 0.05m; body mass 81.2 ± 11.7kg [mean ± SD]). Measures were obtained during three experimental conditions: (i) FAT-EEVID, involving acute fatiguing exercise performed on each assessment occasion plus a single episode of eccentric exercise performed on the first occasion and after the fatigue trial; (ii) FAT, involving the fatiguing exercise only and; (iii) CON consisting of no exercise. Assessments were performed prior to (pre) and at lh, 24h, 48h, 72h, and 168h relative to the eccentric exercise. Repeated-measures ANOVAs showed that muscle damage within the FAT-EEVID condition elicited reductions of up to 38%, 24%) and 65%> in volitional peak force, electromechanical delay and rate of force development compared to baseline and controls, respectively (F[io, 80] = 2.3 to 4.6; p to 30.7%>) following acute fatigue (Fp; i6] = 4.3 to 9.1; p ; Fp, iq = 3.9; p <0.05). The safeguarding of evoked muscle activation capability despite compromised volitional performance might reveal aspects of capabilities for emergency and protective responses during episodes of fatigue and antecedent muscle damaging exercise
Inspiratory muscle warm-up does not improve cycling time-trial performance
Purpose: This study examined the effects of an active cycling warm-up, with and without the addition of an inspiratory muscle warm-up (IMW), on 10-km cycling time-trial performance
Potential Energy Surface for H_2 Dissociation over Pd(100)
The potential energy surface (PES) of dissociative adsorption of H_2 on
Pd(100) is investigated using density functional theory and the full-potential
linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are
identified which have a vanishing energy barrier. A pronounced dependence of
the potential energy on ``cartwheel'' rotations of the molecular axis is found.
The calculated PES shows no indication of the presence of a precursor state in
front of the surface. Both results indicate that steering effects determine the
observed decrease of the sticking coefficient at low energies of the H_2
molecules. We show that the topology of the PES is related to the dependence of
the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma
In vivo measurements of muscle specific tension in adults and children
This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Authors.To better understand the effects of pubertal maturation on the contractile properties of skeletal muscle in vivo, the present study investigated whether there are any differences in the specific tension of the quadriceps muscle in 20 adults and 20 prepubertal children of both sexes. Specific tension was calculated as the ratio between the quadriceps tendon force and the sum of the physiological cross-sectional area (PCSA) multiplied by the cosine of the angle of pennation of each head within the quadriceps muscle. The maximal quadriceps tendon force was calculated from the knee extension maximal voluntary contraction (MVC) by accounting for EMG-based estimates of antagonist co-activation, incomplete quadriceps activation using the interpolation twitch technique and magnetic resonance imaging (MRI)-based measurements of the patellar tendon moment arm. The PCSA was calculated as the muscle volume, measured from MRI scans, divided by optimal fascicle length, measured from ultrasound images during MVC at the estimated angle of peak quadriceps muscle force. It was found that the quadriceps tendon force and PCSA of men (11.4 kN, 214 cm2) were significantly greater than those of the women (8.7 kN, 152 cm2; P 0.05) between groups: men, 55 ± 11 N cm−2; women, 57.3 ± 13 N cm−2; boys, 54 ± 14 N cm−2; and girls, 59.8 ± 15 N cm−2. These findings indicate that the increased muscle strength with maturation is not due to an increase in the specific tension of muscle; instead, it can be attributed to increases in muscle size, moment arm length and voluntary activation level
Safe Design Suggestions for Vegetated Roofs
Rooftop vegetation is becoming increasingly popular because of its environmental benefits and its ability to earn green-building certification credits. With the exception of one international guideline, there is little mention of worker safety and health in vegetated-roof codes and literature. Observations and field investigations of 19 vegetated roofs in the United States revealed unsafe access for workers and equipment, a lack of fall-protection measures, and other site-specific hazards. Design for safety strategies and the integration of life-cycle safety thinking with green-building credits systems are the preferred methods to reduce risk to workers on vegetated roofs. Design suggestions have been developed to add to the body of knowledge. The findings complement several National Institute for Occupational Safety and Health (NIOSH) construction and prevention through design (PtD) goals and are congruent with NIOSH’s Safe Green Jobs initiative. Organizations that install and maintain vegetated roofs can utilize the findings to understand hazards, take precautions, and incorporate safety into their bids
The published version of this article is available here: 10.1061/(ASCE)CO.1943-7862.0000500Support from the the Virginia Tech Occupational Safety and Health Research Center through the Kevin P. Granata Pilot Program funded by the Institute for Critical Technology and Applied Sciences
The Effect of Clamping Pressure and Orthotropic Wood Structure on Strength of Glued Bonds
Reference values for compression strength perpendicular to the grain were determined for radial and tangential sections of samples of sugar maple and ponderosa pine. Samples to be glued were matched according to specific gravity and orthotropic structure and bonded along the grain in tangential or radial sections. Magnitude of clamp pressure was controlled throughout a range of pressures commonly applied in industry, up to about 80% of the compression strength of the wood sample. Tests were conducted on the bonded samples to determine glueline shear strength and percent of wood failure at the bonded surfaces. Results were subjected to regression analysis to ascertain relationships. It was determined that clamping pressure had a different effect on both shear strength and percent of wood failure depending on species and orthotropic section. It is possible to maximize joint strength by applying proper clamping pressure. Results similar in direction but differing in magnitude were obtained with both PVAc and U-F adhesives. A generalized measure of clamping pressure was defined as the ratio of applied clamping pressure to the compression strength (CP/CS) of the wood section to be glued. Using this concept, the optimum clamping pressure for sugar maple was found to be 0.3 times compression strength using U-F glue and 0.5 times using PVAc glue. This approach to determining reliable clamping pressure data can lead to improved gluing practice and more precise testing procedures
- …
