8,457 research outputs found

    On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic pp-Groups

    Full text link
    In this article we show that if V{\cal V} is the variety of polynilpotent groups of class row (c1,c2,...,cs), Nc1,c2,...,cs(c_1,c_2,...,c_s),\ {\mathcal N}_{c_1,c_2,...,c_s}, and GZpα1nZpα2n...nZpαtG\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t} } is the nnth nilpotent product of some cyclic pp-groups, where c1nc_1\geq n, α1α2...αt\alpha_1 \geq \alpha_2 \geq...\geq \alpha_t and (q,p)=1 (q,p)=1 for all primes qq less than or equal to nn, then Nc1,c2,...,csM(G)=pdm|{\mathcal N}_{c_1,c_2,...,c_s}M(G)|=p^{d_m} if and only if GZpnZpn...nZpG\cong{\bf {Z}}_{p}\stackrel{n}{*}{\bf {Z}}_{p}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p } (mm-copies), where m=i=1tαim=\sum _{i=1}^t \alpha_i and dm=χcs+1(...(χc2+1(j=1nχc1+j(m)))...)d_m=\chi_{c_s+1}(...(\chi_{c_2+1}(\sum_{j=1}^n \chi_{c_1+j}(m)))...). Also, we extend the result to the multiple nilpotent product GZpα1n1Zpα2n2...nt1ZpαtG\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n_1}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n_2}{*}...\stackrel{n_{t-1}}{*}{\bf{Z}}_{p^{\alpha_t} }, where c1n1...nt1c_1\geq n_1\geq...\geq n_{t-1}. Finally a similar result is given for the cc-nilpotent multiplier of GZpα1nZpα2n...nZpαtG\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t}} with the different conditions ncn \geq c and (q,p)=1 (q,p)=1 for all primes qq less than or equal to n+c.n+c.Comment: 10 page
    corecore