29 research outputs found

    The impact of N-myc amplification on median survival in children with neuroblastoma

    Get PDF
    Background: Neuroblastoma is the most common extracranial malignant solid tumor in children under 5 years, and it is characterized by wide clinical and biological heterogeneity. N-myc oncogene amplification is considered to be one of the most important prognostic factors used to evaluate survival in these patients. Objectives: The aim of our study was to determine amplification of the N-myc oncogene using real-time quantitative polymerase chain reaction (PCR) and to show the influence of N-myc amplified tumors on the overall survival rate. Patients and Methods: This study is an analytical historical cohort study of forty children with neuroblastoma admitted to the Shafa Hospital, Iran from 1999 to 2010. Paraffined blocks of tumoral tissue were analyzed for N-myc amplification by a PCR. The degree of N-myc amplification was derived from the ratio of the N-myc oncogene and the single copy reference gene, NAGK. In the statistical analysis, a Kaplan-Meier survival analysis was used. Results: We found a variable degree of N-myc amplification, from 3 to 2 200, in 32 of the 40 neuroblastomas (80%). NMYC amplification was seen more frequently in patients older than 2.5 years (71.9%), stage 4 (65.6%) and female (53.1%). Median survival time in the males was significantly longer than in the females (P = 0.03). The overall median survival for N-myc amplified tumor patients was 20 months, and 30 months for the non amplified tumors. Conclusions: The N-myc amplified tumors may increase the probability of more aggressive behavior and rapid tumor progression, especially in advanced stages of neuroblastoma. This study confirmed the importance of obtaining correct measurements of oncogene amplification in the early evaluation of neuroblastomas in order to target more aggressive therapies in patients with a higher risk of cancer progression

    Integrating rapamycin with novel PI3K/Akt/mTOR inhibitor microRNAs on NOTCH1-driven T-cell acute lymphoblastic leukemia (T-ALL)

    Get PDF
    Introduction: The PI3K/AKT/mTOR signaling pathway plays a significant role in the development of T-cell acute lymphoblastic leukemia (T-ALL). Rapamycin is a potential therapeutic strategy for hematological malignancies due to its ability to suppress mTOR activity. Additionally, microRNAs (miRNAs) have emerged as key regulators in T-ALL pathophysiology and treatment. This study aimed to investigate the combined effects of rapamycin and miRNAs in inhibiting the PI3K/AKT/mTOR pathway in T-ALL cells. Methods: Bioinformatic algorithms were used to find miRNAs that inhibit the PI3K/AKT/mTOR pathway. Twenty-five bone marrow samples were collected from T-ALL patients, alongside five control bone marrow samples from non-leukemia patients. The Jurkat cell line was chosen as a representative model for T-ALL. Gene and miRNA expression levels were assessed using quantitative real-time PCR (qRT-PCR). Two miRNAs exhibiting down-regulation in both clinical samples and Jurkat cells were transfected to the Jurkat cell line to investigate their impact on target gene expression. Furthermore, in order to evaluate the potential of combination therapy involving miRNAs and rapamycin, apoptosis and cell cycle assays were carried out. Results: Six miRNAs (miR-3143, miR-3182, miR-99a/100, miR-155, miR-576-5p, and miR-501- 3p) were predicted as inhibitors of PI3K/AKT/mTOR pathway. The expression analysis of both clinical samples and the Jurkat cell line revealed a simultaneous downregulation of miR-3143 and miR-3182. Transfection investigation demonstrated that the exogenous overexpression of miR- 3143 and miR-3182 can effectively inhibit PI3K/AKT/mTOR signaling in the Jurkat cell line. Moreover, when used as a dual inhibitor along with rapamycin, miR-3143 and miR-3182 significantly increased apoptosis and caused cell cycle arrest in the Jurkat cell line. Conclusion: These preliminary results highlight the potential for improving T-ALL treatment through multi-targeted therapeutic strategies involving rapamycin and miR-3143/miR-3182

    ABL Kinase Domain Mutations in Iranian Chronic Myeloid Leukemia Patients with Resistance to Tyrosine Kinase Inhibitors

    Full text link
    Abstract Objective Tyrosine kinase inhibitors (TKIs) are considered standard first-line treatment in patients with chronic myeloid leukemia. Because ABL kinase domain mutations are the most common causes of treatment resistance, their prevalence and assessment during treatment may predict subsequent response to therapy. Methods The molecular response in Bcr-Abl1IS was tested via quantitative real-time polymerase chain reaction. We used the direct sequencing technique to discover the mutations in the ABL kinase domain. The IRIS trial established a standard baseline for measurement – (100% BCR-ABL1 on the ‘international scale’) and a major molecular response (good response to therapy) was defined as a 3-log reduction in the amount of BCR-ABL1 – 0.1% BCR-ABL1 on the international scale. Results We observed 11 different mutations in 13 patients, including E255K, which had the highest mutation rate. A lack of hematologic response was found in 22 patients, who showed a significantly higher incidence of mutations. Conclusion Detection of kinase domain mutations is a reliable method for choosing the best treatment strategy based on patients’ conditions, avoiding ineffective treatments, and running high-cost protocols in patients with acquired resistance to TKIs. </jats:sec

    Enzyme polymorphism in warfarin dose management after pediatric cardiac surgery

    No full text
    Background: Warfarin is an anticoagulant and is widely used for the prevention of thromboembolic events. Genetic variants of the enzymes that metabolize warfarin, i.e. cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1), contribute to differences in patients’ responses to various warfarin doses. There is, however, a dearth of data on the role of these variants during initial anticoagulation in pediatric patients. Objectives: We aimed to evaluate the role of genetic variants of warfarin metabolizing enzymes in anticoagulation in a pediatric population. Patients and Methods: In this prospective cohort study, 200 pediatric patients, who required warfarin therapy after cardiac surgery, were enrolled and divided into two groups. For 50 cases, warfarin was prescribed based on their genotyping (group 1) and for the remaining 150 cases, warfarin was prescribed based on our institute routine warfarin dosing (group 2). The study endpoints were comprised of time to reach the first therapeutic international normalization ratio (INR), time to reach a stable warfarin maintenance dose, time with over- anticoagulation, bleeding episodes, hospital stay days and stable warfarin maintenance dose. Results: There was no significant difference concerning the demographic data between the two groups. The time to stable warfarin maintenance dose and hospital stay days were significantly lower in group 1 (P <0.001). However, there was no statistically significant difference in time to reach the first therapeutic INR, time with over-anticoagulation and bleeding episodes, between the two groups. Conclusions: The determination of warfarin dose, based on genotyping, might reduce the time to achieve stable anticoagulation of warfarin dose and length of hospital stay

    A Cross-Sectional Study for Evaluation of KRAS and BRAF Mutations by Reverse Dot Blot, PCR-RFLP, and Allele-Specific PCR Methods Among Patients with Colorectal Cancer

    Full text link
    Background: KRAS and BRAF genes are the biomarkers in Colorectal Cancer (CRC) which play prognostic and predictive roles in CRC treatment. Nowadays, the selection of rapid and available methods for studying KRAS and BRAF mutations in anti-EGFR therapy of patients suffering from CRC plays a significant role. In this study, the mutations of these two oncogenes were evaluated by different methods.&#x0D; Methods: This study was performed on 50 Formalin-Fixed Paraffin-Embedded (FFPE) tissue blocks of patients diagnosed with colorectal cancer. After DNA extraction, KRAS and BRAF gene mutations were evaluated using reverse dot blot, and results were compared with PCR-RFLP and allele-specific PCR for KRAS and BRAF mutations, respectively.&#x0D; Results: KRAS gene mutations were detected in 42% of patients, of which 30% were in codon 12 region, and 12% in codon 13. The most frequent mutations of KRAS were related to G12D  and 10% of patients had BRAF mutated genes. The type of KRAS gene mutations could be evaluated by reverse dot blot method. In general, the results of PCR-RFLP and allele-specific PCR were similar to the findings by reverse dot blot method. &#x0D; Conclusion: These findings suggest that PCR-RFLP and allele-specific PCR methods are suitable for screening the presence of the mutations in KRAS and BRAF oncogenes. In fact, another method with more sensitivity is needed for a more accurate assessment to determine the type of mutations. Due to higher speed of detection, reduced Turnaround Time (TAT), and possible role of some KRAS point mutations in overall survival, reverse dot blot analysis seems to be an optimal method.</jats:p

    Prognostic correlation of NOTCH1 and SF3B1 mutations with chromosomal abnormalities in chronic lymphocytic leukemia patients

    No full text
    Abstract Background and Aim Chronic lymphocytic leukemia (CLL) is a monoclonal malignancy of B lymphocytes. Since common mutations in NOTCH1 and SF3B1, along with other possible chromosomal alterations, change disease severity and survival of patients with CLL, we aimed to evaluate the correlation of common mutations in NOTCH1 and SF3B1 as the poor prognostic markers with chromosomal abnormalities and clinical hematology. Method This retrospective study was performed on the peripheral blood of 51 patients diagnosed before chemotherapy with CLL. G‐banding karyotype and FISH were performed. For NOTCH1, exon 34 and for SF3B1, exons 14,15,16 were assessed using Sanger sequencing. Results The mutation frequency of NOTCH1 and SF3B1 with the pathogenic clinical status was 6:51 (11.76%), and variants obtained from both genes were 9:51 (17.64%). The frequency of SF3B1 mutation (K666E) was higher than in previous studies (p‐value <.05). There was a significant correlation between NOTCH1 mutations and del17p13 (p‐value = .068), also SF3B1 mutations with del11q22 (p‐value = .095) and del13q14 (p‐value = .066). Up to 90% of the specific stimuli used for the G‐banding karyotype successfully identified the malignant clone. There was a significant relationship between the cluster of differentiation 38 (CD38) expression level and NOTCH1 mutations (p‐value = .019) and a significant correlation between Binet classification and the SF3B1 (p‐value = .096). Conclusion The correlation of NOTCH1 and SF3B1 mutations with chromosomal abnormalities and CD38 expression may reveal the overall patient's survival rate. The mutations may be effective in the clonal expansion and progression of CLL, particularly in the diagnosis stage, as well as the control and management of the treatment

    Paroxysmal nocturnal haemoglobinuria, diagnosis and haematological findings, first report from Iran, model for developing countries

    No full text
    Abstract Since paroxysmal nocturnal haemoglobinuria (PNH) was first described in 1881, the diagnosis and follow‐up patients diagnosed with the illness has remained an area of concern, with several different techniques of varying sensitivity having been described in the literature for both the diagnosis and monitoring treatment of the disease. PNH is a rare and life‐threatening disease that manifests symptoms of haemolytic anaemia. Hence, a quick and reliable technique for precise diagnosis would be crucial. PNH patients who have previously been diagnosed with aplastic anaemia or myelodysplastic syndrome carry small PNH clones and for more than a century traditional method with low sensitivity was used for such patients. In 2010, the International Clinical Cytometry Society described a highly sensitive method for detection and quantification of different types of PNH clones using multi‐colour flow cytometry. In this method, a three‐colour flow cytometer is essential to detect PNH affected cells amongst monocytes and granulocytes. This started a new era in the diagnosis of patients who carry small clones of PNH cells. Before this, flow cytometric analysis was used only for detection of PNH cells amongst erythrocytes. By using flow cytometry instruments with more light sources, the sensitivity of detection and quantification of PNH clones would be augmented. However, standardisation and crosstalk compensation would be the most concerning issue. For the first time in Iran, we set up and standardised multi‐colour flow cytometry technique to detect PNH cells in erythrocytes and leukocytes at Payvand medical laboratory
    corecore