603 research outputs found
Breaking Halo Occupation Degeneracies with Marked Statistics
We show that a suitably defined marked correlation function can be used to
break degeneracies in halo-occupation distribution modeling. The statistic can
be computed on both 3D and 2D data sets, and should be applicable to all
upcoming galaxy surveys. A proof of principle, using mock catalogs created from
N-body simulations, is given.Comment: 4 pages, 3 figures, minor revisions to match version accepted by
MNRA
Are We Sims? How Computer Simulations Represent and What This Means for the Simulation Argument
N. Bostrom's simulation argument and two additional assumptions imply that we likely live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxie
Effects of Noise on Galaxy Isophotes
The study of shapes of the images of objects is an important issue not only
because it reveals its dynamical state but also it helps to understand the
object's evolutionary history. We discuss a new technique in cosmological image
analysis which is based on a set of non-parametric shape descriptors known as
the Minkowski Functionals (MFs). These functionals are extremely versatile and
under some conditions give a complete description of the geometrical properties
of objects. We believe that MFs could be a useful tool to extract information
about the shapes of galaxies, clusters of galaxies and superclusters. The
information revealed by MFs can be utilized along with the knowledge obtained
from currently popular methods and thus could improve our understanding of the
true shapes of cosmological objects.Comment: 3 pages, 1 figure, to appear in "The IGM/Galaxy Connection - The
Distribution of Baryons at z=0" Conference Proceeding
Extended morphometric analysis of neuronal cells with Minkowski valuations
Minkowski valuations provide a systematic framework for quantifying different
aspects of morphology. In this paper we apply vector- and tensor-valued
Minkowski valuations to neuronal cells from the cat's retina in order to
describe their morphological structure in a comprehensive way. We introduce the
framework of Minkowski valuations, discuss their implementation for neuronal
cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure
Morphological fluctuations of large-scale structure: the PSCz survey
In a follow-up study to a previous analysis of the IRAS 1.2Jy catalogue, we quantify the morphological fluctuations in the PSCz survey. We use a variety of measures, among them the family of scalar Minkowski functionals. We confirm the existence of significant fluctuations that are discernible in volume-limited samples out to 200Mpc/h. In contrast to earlier findings, comparisons with cosmological N-body simulations reveal that the observed fluctuations roughly agree with the cosmic variance found in corresponding mock samples. While two-point measures, e.g. the variance of count-in-cells, fluctuate only mildly, the fluctuations in the morphology on large scales indicate the presence of coherent structures that are at least as large as the sample
The Implementation, Interpretation, and Justification of Likelihoods in Cosmology
I discuss the formal implementation, interpretation, and justification of likelihood attributions in cosmology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal problems that undermine their applicability in this context
Are We Sims? How Computer Simulations Represent and What this Means for the Simulation Argument
N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies
- …
