13 research outputs found

    Development and validation of high-performance thin layer chromatographic method for ursolic acid in Malus domestica peel

    No full text
    Ursolic acid, a pentacyclic triterpenoid possess a wide range of pharmacological activities. It shows hypoglycemic, antiandrogenic, antibacterial, antiinflammatory, antioxidant, diuretic and cynogenic activity. It is commonly present in plants especially coating of leaves and fruits, such as apple fruit, vinca leaves, rosemary leaves, and eucalyptus leaves. A simple high-performance thin layer chromatographic method has been developed for the quantification of ursolic acid from apple peel (Malus domestica). The samples dissolved in methanol and linear ascending development was carried out in twin trough glass chamber. The mobile phase was selected as toluene:ethyl acetate:glacial acetic acid (70:30:2). The linear regression analysis data for the calibration plots showed good linear relationship with r 2 =0.9982 in the concentration range 0.2-7 ΅g/spot with respect to peak area. According to the ICH guidelines the method was validated for linearity, accuracy, precision, and robustness. Statistical analysis of the data showed that the method is reproducible and selective for the estimation of ursolic acid

    Prediction of mean skin temperature in warm environments

    Full text link
    The data collected by the authors in four experimental series have been analysed together with data from the literature, to study the relationship between mean skin temperature and climatic parameters, subject metabolic rate and clothing insulation. The subjects involved in the various studies were young male subjects, unacclimatized to heat. The range of conditions examined involved mean skin temperatures between 33 degrees C and 38 degrees C, air temperatures (Ta) between 23 degrees C and 50 degrees C, ambient water vapour pressures (Pa) between 1 and 4.8 kPa, air velocities (Va) between 0.2 and 0.9 m.s-1, metabolic rates (M) between 50 and 270 W.m-2, and Clo values between 0.1 and 0.6. In 95% of the data, mean radiant temperature was within +/- 3 degrees C of air temperature. Based on 190 data averaged over individual values, the following equation was derived by a multiple linear regression technique: Tsk = 30.0 + 0.138 Ta + 0.254 Pa-0.57 Va + 1.28.10(-3) M-0.553 Clo. This equation was used to predict mean skin temperature from 629 individual data. The difference between observed and predicted values was within +/- 0.6 degrees C in 70% of the cases and within +/- 1 degrees C in 90% of the cases. It is concluded that the proposed formula may be used to predict mean skin temperature with satisfactory accuracy in nude to lightly clad subjects exposed to warm ambient conditions with no significant radiant heat load

    Evidence of bacterial etiology: a historical perspective

    No full text

    Nanoparticle-Based Diamond Electrodes

    No full text

    REPRODUCTIVE and LARVAL ECOLOGY OF MARINE BOTTOM INVERTEBRATES

    No full text
    corecore