4,399 research outputs found
Application of electron multiplying CCD technology in space instrumentation
Electron multiplying CCD (EMCCD) technology has found important initial applications in low light surveillance and photon starved scientific instrumentation. This paper discusses the attributes of the EMCCD which make it useful for certain space instruments, particularly those which are photon starved, and explores likely risks from the radiation expected in such instruments
On A New Formulation of Micro-phenomena: Basic Principles, Stationary Fields And Beyond
In a series of essays, beginning with this article, we are going to develop a
new formulation of micro-phenomena based on the principles of reality and
causality. The new theory provides with us a new depiction of micro-phenomena
assuming an unified concept of information, matter and energy. So, we suppose
that in a definite micro-physical context (including other interacting
particles), each particle is enfolded by a probability field whose existence is
contingent upon the existence of the particle, but it can locally affect the
physical status of the particle in a context-dependent manner. The dynamics of
the whole particle-field system obeys deterministic equations in a manner that
when the particle is subjected to a conservative force, the field also
experiences a conservative complex force which its form is determined by the
dynamics of particle. So, the field is endowed with a given amount of energy,
but its value is contingent upon the physical conditions the particle is
subjected to. Based on the energy balance of the particle and its associated
field, we argue why the field has a probabilistic objective nature. In such a
way, the basic elements of this new formulation, its application for some
stationary states and its nonlinear generalization for conservative systems are
discussed here.Comment: 35 pages, 5 figures, 3 appendice
Recommended from our members
A comparison of methods for determining ploidy in white sturgeon (Acipenser transmontanus)
Release of sturgeon with abnormal ploidy into the wild may result in reduced fitness due to lowered fertility in the F2 and subsequent generations. Further, there is evidence that ploidy affects reproductive development and caviar yield. Therefore, the ability to accurately characterize the ploidy of white sturgeon (Acipenser transmontanus)is essential for both commercial and conservation aquaculture. This study compares nuclear volume and whole erythrocyte long-axis lengths obtained using Coulter counter and blood smears, respectively, from captive white sturgeon from populations originating in California and Idaho. We examine which method provides the most accurate, time efficient and cost-effective characterization of ploidy in this species. Results from Coulter counter and blood smears were compared to results from flow cytometry, the gold standard for genome size analysis. Previous work suggests that blood smears can distinguish between 8N (diploid)and 12N (triploid)sturgeon, but further analysis is required to see if this method can also be used to identify 10N fish and to provide robust evidence of its utility in 8N and 12N fish across populations. In this study, we demonstrated that the Coulter counter had 100% agreement with flow cytometry in ploidy assignment, while blood smears vary in their accuracy based on population. Blood smears showed a high degree of overlap in erythrocyte long-axis length between 8N and 10N individuals as well as some overlap between 10N and 12N individuals in the California fish, and a high degree of overlap between 8N and 12N individuals in the Idaho fish. Although blood smears are time-intensive and vary in their ploidy assignment accuracy, they are a low-cost technique and as such may have some utility for caviar farms attempting to identify 12N individuals in a small number of broodstock. By comparing the accuracy, efficiency and cost of these three methods, sturgeon farmers and conservation hatcheries will be able to choose the best method for their needs in determining the ploidy of their fish. We determined that Coulter counter is equally accurate to flow cytometry and is also the most time efficient method for ploidy determination in white sturgeon
Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle
gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle
Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium <i>Pectobacterium carotovorum</i> carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of <i>Pectobacterium carotovorum</i> and <i>Pectobacterium atrosepticum</i> with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that <i>Pectobacterium spp.</i> carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of <i>Pectobacterium carotovorum</i> and <i>atrosepticum</i> that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Six-Month Mortality among HIV-Infected Adults Presenting for Antiretroviral Therapy with Unexplained Weight Loss, Chronic Fever or Chronic Diarrhea in Malawi.
In sub-Saharan Africa, early mortality is high following initiation of antiretroviral therapy (ART). We investigated 6-month outcomes and factors associated with mortality in HIV-infected adults being assessed for ART initiation and presenting with weight loss, chronic fever or diarrhea, and with negative TB sputum microscopy
Public Evidence from Secret Ballots
Elections seem simple---aren't they just counting? But they have a unique,
challenging combination of security and privacy requirements. The stakes are
high; the context is adversarial; the electorate needs to be convinced that the
results are correct; and the secrecy of the ballot must be ensured. And they
have practical constraints: time is of the essence, and voting systems need to
be affordable and maintainable, and usable by voters, election officials, and
pollworkers. It is thus not surprising that voting is a rich research area
spanning theory, applied cryptography, practical systems analysis, usable
security, and statistics. Election integrity involves two key concepts:
convincing evidence that outcomes are correct and privacy, which amounts to
convincing assurance that there is no evidence about how any given person
voted. These are obviously in tension. We examine how current systems walk this
tightrope.Comment: To appear in E-Vote-Id '1
- …
