6,421 research outputs found
Quantum correlations from local amplitudes and the resolution of the Einstein-Podolsky-Rosen nonlocality puzzle
The Einstein-Podolsky-Rosen nonlocality puzzle has been recognized as one of
the most important unresolved issues in the foundational aspects of quantum
mechanics. We show that the problem is resolved if the quantum correlations are
calculated directly from local quantities which preserve the phase information
in the quantum system. We assume strict locality for the probability amplitudes
instead of local realism for the outcomes, and calculate an amplitude
correlation function.Then the experimentally observed correlation of outcomes
is calculated from the square of the amplitude correlation function. Locality
of amplitudes implies that the measurement on one particle does not collapse
the companion particle to a definite state. Apart from resolving the EPR
puzzle, this approach shows that the physical interpretation of apparently
`nonlocal' effects like quantum teleportation and entanglement swapping are
different from what is usually assumed. Bell type measurements do not change
distant states. Yet the correlations are correctly reproduced, when measured,
if complex probability amplitudes are treated as the basic local quantities. As
examples we discuss the quantum correlations of two-particle maximally
entangled states and the three-particle GHZ entangled state.Comment: Std. Latex, 11 pages, 1 table. Prepared for presentation at the
International Conference on Quantum Optics, ICQO'2000, Minsk, Belaru
Generalized Quantum Theory: Overview and Latest Developments
The main formal structures of Generalized Quantum Theory are summarized.
Recent progress has sharpened some of the concepts, in particular the notion of
an observable, the action of an observable on states (putting more emphasis on
the role of proposition observables), and the concept of generalized
entanglement. Furthermore, the active role of the observer in the structure of
observables and the partitioning of systems is emphasized.Comment: 14 pages, update in reference
Dichotomic Functions and Bell's Theorems
It is shown that correlations of dichotomic functions can not conform to results from Quantum Mechanics. Also, it is seen that the assumptions attendant to optical tests of Bell's Inequalities actually are consistent with classical physics so that in conclusion, Bell's Theorems do not preclude hidden variable interpretations of Quantum Mechanics
Recommended from our members
Charge Transfer in Single Chains of a Donor-Acceptor Conjugated Tri-Block Copolymer.
The photophysics of a conjugated triblock copolymer comprising poly(9,9-dioctylfluorene-co-bis-N,N'-(4-methylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFM) electron donor and poly(4-(9,9-dioctyl-9H-fluoren-2-yl)benzo[c][1,2,5]-thiadiazole) (F8BT) electron acceptor blocks has been studied in solution, in films, and as single chains. While an additional long-wavelength emission apparent in neat films of the copolymer is attributed to interchain exciplex formation, no such long-wavelength emission is apparent in solution or from single molecules. However, in these cases, time-resolved fluorescence measurements indicate the presence of a delayed fluorescence. The kinetics of the delayed emission can be interpreted in terms of an equilibrium between a locally excited and a charge-transfer state at the interface of the copolymer block components. Rate constants and thermodynamic quantities associated with these processes have been evaluated. The single-molecule results allow the assignment of an intramolecular charge-transfer state in an isolated conjugated block copolymer chain.We thank the Australian Research Council (ARC) for financial support of this research through grants
DP0986166, LE100100131 and LE110100161. ENH acknowledges an Australian Postgraduate Award. We acknowledge Sam Ashworth for technical assistance with data collection. NCG is grateful to the
School of Chemistry, The University of Melbourne for a Wilsmore Fellowship, and to Queen’s College,
Melbourne for a Sugden Fellowship.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/jp510769p
Decision Making for Inconsistent Expert Judgments Using Negative Probabilities
In this paper we provide a simple random-variable example of inconsistent
information, and analyze it using three different approaches: Bayesian,
quantum-like, and negative probabilities. We then show that, at least for this
particular example, both the Bayesian and the quantum-like approaches have less
normative power than the negative probabilities one.Comment: 14 pages, revised version to appear in the Proceedings of the QI2013
(Quantum Interactions) conferenc
An experimental test of non-local realism
Most working scientists hold fast to the concept of 'realism' - a viewpoint
according to which an external reality exists independent of observation. But
quantum physics has shattered some of our cornerstone beliefs. According to
Bell's theorem, any theory that is based on the joint assumption of realism and
locality (meaning that local events cannot be affected by actions in space-like
separated regions) is at variance with certain quantum predictions. Experiments
with entangled pairs of particles have amply confirmed these quantum
predictions, thus rendering local realistic theories untenable. Maintaining
realism as a fundamental concept would therefore necessitate the introduction
of 'spooky' actions that defy locality. Here we show by both theory and
experiment that a broad and rather reasonable class of such non-local realistic
theories is incompatible with experimentally observable quantum correlations.
In the experiment, we measure previously untested correlations between two
entangled photons, and show that these correlations violate an inequality
proposed by Leggett for non-local realistic theories. Our result suggests that
giving up the concept of locality is not sufficient to be consistent with
quantum experiments, unless certain intuitive features of realism are
abandoned.Comment: Minor corrections to the manuscript, the final inequality and all its
conclusions do not change; description of corrections (Corrigendum) added as
new Appendix III; Appendix II replaced by a shorter derivatio
The effect of surveillance and appreciative inquiry on puerperal infections : a longitudinal cohort study in India
Peer reviewedPublisher PD
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
Boundaries of Semantic Distraction: Dominance and Lexicality Act at Retrieval
Three experiments investigated memory for semantic information with the goal of determining boundary conditions for the manifestation of semantic auditory distraction. Irrelevant speech disrupted the free recall of semantic category-exemplars to an equal degree regardless of whether the speech coincided with presentation or test phases of the task (Experiment 1) and occurred regardless of whether it comprised random words or coherent sentences (Experiment 2). The effects of background speech were greater when the irrelevant speech was semantically related to the to-be-remembered material, but only when the irrelevant words were high in output dominance (Experiment 3). The implications of these findings in relation to the processing of task material and the processing of background speech is discussed
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
- …
