1,367 research outputs found

    How the hydrogen bond in NH4_4F is revealed with Compton scattering

    Full text link
    In order to probe electron wave functions involved in the bonding of NH4_4F, we have performed Compton scattering experiments in an oriented single crystal and in a powder. Ab initio calculations of the Compton profiles for NH4_4F and NH4_4Cl are used to enlighten the nature of the bonds in the NH4_4F crystal. As a consequence, we are able to show significant charge transfer in the ammonium ion which is not observable using other methods. Our study provides a compelling proof for hydrogen bond formation in NH4_4F.Comment: 4 pages, 5 figures, accepted for publication as a Regular Article in Physical Review

    Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering

    Full text link
    A direct measure of hydrogen bonding in water under conditions ranging from the normal state to the supercritical regime is derived from the Compton scattering of inelastically-scattered X-rays. First, we show that a measure of the number of electrons nen_e involved in hydrogen bonding at varying thermodynamic conditions can be directly obtained from Compton profile differences. Then, we use first-principles simulations to provide a connection between nen_e and the number of hydrogen bonds nHBn_{HB}. Our study shows that over the broad range studied the relationship between nen_e and nHBn_{HB} is linear, allowing for a direct experimental measure of bonding and coordination in water. In particular, the transition to supercritical state is characterized by a sharp increase in the number of water monomers, but also displays a significant number of residual dimers and trimers.Comment: 14 pages, 5 figures, 1 tabl

    Graphene-based nanomaterials for tissue engineering in the dental field

    Get PDF
    The world of dentistry is approaching graphene-based nanomaterials as substitutes for tissue engineering. Apart from its exceptional mechanical strength, electrical conductivity and thermal stability, graphene and its derivatives can be functionalized with several bioactive molecules. They can also be incorporated into different scaffolds used in regenerative dentistry, generating nanocomposites with improved characteristics. This review presents the state of the art of graphene-based nanomaterial applications in the dental field. We first discuss the interactions between cells and graphene, summarizing the available in vitro and in vivo studies concerning graphene biocompatibility and cytotoxicity. We then highlight the role of graphene-based nanomaterials in stem cell control, in terms of adhesion, proliferation and differentiation. Particular attention will be given to stem cells of dental origin, such as those isolated from dental pulp, periodontal ligament or dental follicle. The review then discusses the interactions between graphene-based nanomaterials with cells of the immune system; we also focus on the antibacterial activity of graphene nanomaterials. In the last section, we offer our perspectives on the various opportunities facing the use of graphene and its derivatives in associations with titanium dental implants, membranes for bone regeneration, resins, cements and adhesives as well as for tooth-whitening procedure

    Education in mine waste engineering: the experience of "SIGEO" Master's Course

    Get PDF
    On 19th July 1985 the failure of two tailings dams at the service of a fluorite mine in the Stava Valley (Italy) caused the death of 268 people and severe environmental and socioeconomic damage. Similar accidents have happened in Sgorigrad (Bulgaria, 1966), Aberfan (U.K., 1966), Buffalo Creek (USA, 1972), Aznalcollar (Spain, 1998), Taoshi (China, 2008) and many other places worldwide. The European Union has recognized the seriousness of the problems concerning the management and disposal of mining waste (over 400 million tonnes per year worldwide). With the 2006/21/CE Directive, the EU has urged all member States to carry out censuses, monitoring and consolidation of existing structures under the supervision of qualified experts. These experts should be provided with interdisciplinary knowledge that is difficult to attain during normal degree courses. For this reason, the Trento and Modena-Reggio Emilia Universities and the Turin Polytechnic have set up a post-graduate Master’s Course in “Analysis and Management of Geotechnical Structures”. The article describes the interdisciplinary approach adopted in the course and aims to stimulate the sharing of this initiative among other European Universities

    Multiparty Session Types as Coherence Proofs

    Get PDF
    We propose a Curry-Howard correspondence between a language for programming multiparty sessions and a generalisation of Classical Linear Logic (CLL). In this framework, propositions correspond to the local behaviour of a participant in a multiparty session type, proofs to processes, and proof normalisation to executing communications. Our key contribution is generalising duality, from CLL, to a new notion of n-ary compatibility, called coherence. Building on coherence as a principle of compositionality, we generalise the cut rule of CLL to a new rule for composing many processes communicating in a multiparty session. We prove the soundness of our model by showing the admissibility of our new rule, which entails deadlock-freedom via our correspondence

    Purification and characterization of Taq polymerase: A 9-week biochemistry laboratory project for undergraduate students

    Get PDF
    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of Thermus aquaticus DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week\u27s procedure focus on a single learning goal. The laboratory series has been taught for the past 7 years, and survey-based assessment of the effectiveness of the laboratory series was completed during the 2006 and 2007 fall semesters. Statistical analysis of the survey results demonstrate that the laboratory series is very effective in teaching students the theory and practice of protein purification and analysis while also demonstrating positive results in more broad areas of scientific skill and knowledge. Amongst the findings, the largest reported increases in knowledge were related to students\u27 understanding of how patent law relates to laboratory science, a topic of great importance to modern researchers that is readily discussed in relation to Taq polymerase. Overall, this laboratory series proves to be a very effective component in the curricula of undergraduate biology and chemistry majors and may be an appropriate laboratory experience for undergraduates. © 2010 by The International Union of Biochemistry and Molecular Biology

    Elevation-dependent biases of raw and bias-adjusted EURO-CORDEX regional climate models in the European Alps

    Get PDF
    Data from the EURO-CORDEX ensemble of regional climate model simulations and the CORDEX-Adjust dataset were evaluated over the European Alps using multiple gridded observational datasets. Biases, which are here defined as the difference between models and observations, were assessed as a function of the elevation for different climate indices that span average and extreme conditions. Moreover, we assessed the impact of different observational datasets on the evaluation, including E-OBS, APGD, and high-resolution national datasets. Furthermore, we assessed the bi-variate dependency of temperature and precipitation biases, their temporal evolution, and the impact of different bias adjustment methods and bias adjustment reference datasets. Biases in seasonal temperature, seasonal precipitation, and wet-day frequency were found to increase with elevation. Differences in temporal trends between RCMs and observations caused a temporal dependency of biases, which could be removed by detrending both observations and RCMs. The choice of the reference observation datasets used for bias adjustment turned out to be more relevant than the choice of the bias adjustment method itself. Consequently, climate change assessments in mountain regions need to pay particular attention to the choice of observational dataset and, furthermore, to the elevation dependence of biases and the increasing observational uncertainty with elevation in order to provide robust information on future climate

    Investigating the role of sampler compartments employed by POCIS devices in pesticides sampling

    Get PDF
    Polar Organic Chemical Integrative Sampler (POCIS) is a passive sampler employed to monitor organic compounds in water (e.g. pesticides, drugs, etc.); in our case consists of a receiving phase, Oasis HLB, enclosed between two polyethersulfone (PES) membranes. In most cases, the analytes were extracted only from the receiving phase but recent works show that some compounds were also adsorbed on the PES membranes. Many aspects on the membrane behaviour are still unknown and this work aims to fill some knowledge gaps exploring the capability of PES membranes to adsorb pesticides. From experiments conducted in a controlled environment, it was seen that more than half of the investigated compounds were adsorbed more effectively by the PES membrane than the Oasis HLB phase. The affinity of these pesticides towards the two sampler compartments, can be explained only partially by the polarity of the compounds. However, a significant adsorption of the most hydrophobic compounds by the PES membrane was noticed, especially for values of LogKow higher than 4. From these experiments, it was possible to calibrate POCIS by comparing the pesticide concentration in water with the amount adsorbed by the two sampler compartments over time, with the estimation of two values of sampling rate for each pesticide (RS,HLB and RS,PES). It was seen that the combination of the two adsorbent substrates allowed to intercept almost all the studied compounds satisfactorily and this behaviour was also confirmed by a field sampling campaign

    Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    Get PDF
    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r(1) relaxivity at low fields, but tend to lose this merit when used as T-1 contrast agents (r(1)/r(2) = 0.5 similar to 1), with their r(1) decreasing and r(2) increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r(1) relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r(1)/r(2) ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T-1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.open0
    corecore