1,466 research outputs found

    Exploring venlafaxine pharmacokinetic variability with a phenotyping approach, a multicentric french-swiss study (MARVEL study).

    Get PDF
    It is well known that the standard doses of a given drug may not have equivalent effects in all patients. To date, the management of depression remains mainly empirical and often poorly evaluated. The development of a personalized medicine in psychiatry may reduce treatment failure, intolerance or resistance, and hence the burden and costs of mood depressive disorders. The Geneva Cocktail Phenotypic approach presents several advantages including the "in vivo" measure of different cytochromes and transporter P-gp activities, their simultaneous determination in a single test, avoiding the influence of variability over time on phenotyping results, the administration of low dose substrates, a limited sampling strategy with an analytical method developed on DBS analysis. The goal of this project is to explore the relationship between the activity of drug-metabolizing enzymes (DME), assessed by a phenotypic approach, and the concentrations of Venlafaxine (VLX) + O-demethyl-venlafaxine (ODV), the efficacy and tolerance of VLX. This study is a multicentre prospective non-randomized open trial. Eligible patients present a major depressive episode, MADRS over or equal to 20, treatment with VLX regardless of the dose during at least 4 weeks. The Phenotype Visit includes VLX and ODV concentration measurement. Following the oral absorption of low doses of omeprazole, midazolam, dextromethorphan, and fexofenadine, drug metabolizing enzymes activity is assessed by specific metabolite/probe concentration ratios from a sample taken 2 h after cocktail administration for CYP2C19, CYP3A4, CYP2D6; and by the determination of the limited area under the curve from the capillary blood samples taken 2-3 and 6 h after cocktail administration for CYP2C19 and P-gp. Two follow-up visits will take place between 25 and 40 days and 50-70 days after inclusion. They include assessment of efficacy, tolerance and observance. Eleven french centres are involved in recruitment, expected to be completed within approximately 2 years with 205 patients. Metabolic ratios are determined in Geneva, Switzerland. By showing an association between drug metabolism and VLX concentrations, efficacy and tolerance, there is a hope that testing drug metabolism pathways with a phenotypical approach would help physicians in selecting and dosing antidepressants. The MARVEL study will provide an important contribution to increasing the knowledge of VLX variability and in optimizing the use of methods of personalized therapy in psychiatric settings. ClinicalTrials.gov NCT02590185 (10/27/2015). This study is currently recruiting participants

    Can an Integrated Science Approach to Precision Medicine Research Improve Lithium Treatment in Bipolar Disorders?

    Get PDF
    Clinical practice guidelines identify lithium as a first line treatment for mood stabilization and reduction of suicidality in bipolar disorders (BD); however, most individuals show sub-optimal response. Identifying biomarkers for lithium response could enable personalization of treatment and refine criteria for stratification of BD cases into treatment-relevant subgroups. Existing systematic reviews identify potential biomarkers of lithium response, but none directly address the conceptual issues that need to be addressed to enhance translation of research into precision prescribing of lithium. For example, although clinical syndrome subtyping of BD has not led to customized individual treatments, we emphasize the importance of assessing clinical response phenotypes in biomarker research. Also, we highlight the need to give greater consideration to the quality of prospective longitudinal monitoring of illness activity and the differentiation of non-response from partial or non-adherence with medication. It is unlikely that there is a single biomarker for lithium response or tolerability, so this review argues that more research should be directed toward the exploration of biosignatures. Importantly, we emphasize that an integrative science approach may improve the likelihood of discovering the optimal combination of clinical factors and multimodal biomarkers (e.g., blood omics, neuroimaging, and actigraphy derived-markers). This strategy could uncover a valid lithium response phenotype and facilitate development of a composite prediction algorithm. Lastly, this narrative review discusses how these strategies could improve eligibility criteria for lithium treatment in BD, and highlights barriers to translation to clinical practice including the often-overlooked issue of the cost-effectiveness of introducing biomarker tests in psychiatry

    Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance.

    Get PDF
    BackgroundBipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain.AimsWe sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL.MethodTo detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance (n = 342) among healthy individuals.ResultsIntegrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85×10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P = 3.54×10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals.ConclusionsOur findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder

    The role of childhood trauma in bipolar disorders

    Get PDF
    This review will discuss the role of childhood trauma in bipolar disorders. Relevant studies were identified via Medline (PubMed) and PsycINFO databases published up to and including July 2015. This review contributes to a new understanding of the negative consequences of early life stress, as well as setting childhood trauma in a biological context of susceptibility and discussing novel long-term pathophysiological consequences in bipolar disorders. Childhood traumatic events are risk factors for developing bipolar disorders, in addition to a more severe clinical presentation over time (primarily an earlier age at onset and an increased risk of suicide attempt and substance misuse). Childhood trauma leads to alterations of affect regulation, impulse control, and cognitive functioning that might decrease the ability to cope with later stressors. Childhood trauma interacts with several genes belonging to several different biological pathways [Hypothalamic–pituitary–adrenal (HPA) axis, serotonergic transmission, neuroplasticity, immunity, calcium signaling, and circadian rhythms] to decrease the age at the onset of the disorder or increase the risk of suicide. Epigenetic factors may also be involved in the neurobiological consequences of childhood trauma in bipolar disorder. Biological sequelae such as chronic inflammation, sleep disturbance, or telomere shortening are potential mediators of the negative effects of childhood trauma in bipolar disorders, in particular with regard to physical health. The main clinical implication is to systematically assess childhood trauma in patients with bipolar disorders, or at least in those with a severe or instable course. The challenge for the next years will be to fill the gap between clinical and fundamental research and routine practice, since recommendations for managing this specific population are lacking. In particular, little is known on which psychotherapies should be provided or which targets therapists should focus on, as well as how childhood trauma could explain the resistance to mood stabilizers.</p

    Contribution des association de patients à l’organisation, au fonctionnement et à la réglementation des collections d’échantillons biologiques

    Get PDF
    Les associations de patients oeuvrant dans le domaine de la recherche en génétique sont aujourd’hui confrontées à un défi : il s’agit pour elles, malgré leurs différences structurelles indéniables, de s’organiser pour rationaliser leurs activités, notamment en se regroupant et en uniformisant leurs procédures. Surtout, il leur faut affronter la question fondamentale de la maîtrise de l’accès aux échantillons et des résultats éventuellement obtenus sur les inventions qui pourraient être réalisées à partir du matériel détenu dans les collections. L’élaboration d’une politique cohérente en la matière est une condition sine qua nonde la valorisation équilibrée des collections, au bénéfice de l’intérêt général, particulièrement dans le champ des maladies rares.Patients’s organisations working in the field of genetics are facing a challenge: despite their structural differences, they have to organise themselves in order to rationalise their activities, namely by gathering together and uniformising their procedures. Moreover they have to deal with the key question of the control of the access to samples and results which might follow from the inventions realised on the basis of the material maintained in the collections. The elaboration of a consistent policy in that respect is a prerequisite of a balanced enhancement of the collections, in the general interest, specially in the sector of rare diseases

    Genome-wide Association Study of Borderline Personality Disorder Reveals Genetic Overlap with Bipolar Disorder, Major Depression and Schizophrenia

    Get PDF
    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57 [P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies

    Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1

    Get PDF
    Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta = 5.72 × 10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P = 6.70 × 10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P = 0.044) and educational attainment (P = 0.0039), a 'proxy phenotype' of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2 Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis

    Possible Associations of NTRK2 Polymorphisms with Antidepressant Treatment Outcome: Findings from an Extended Tag SNP Approach

    Get PDF
    Background: Data from clinical studies and results from animal models suggest an involvement of the neurotrophin system in the pathology of depression and antidepressant treatment response. Genetic variations within the genes coding for the brain-derived neurotrophic factor (BDNF) and its key receptor Trkb (NTRK2) may therefore influence the response to antidepressant treatment. Methods: We performed a single and multi-marker association study with antidepressant treatment outcome in 398 depressed Caucasian inpatients participating in the Munich Antidepressant Response Signature (MARS) project. Two Caucasian replication samples (N = 249 and N = 247) were investigated, resulting in a total number of 894 patients. 18 tagging SNPs in the BDNF gene region and 64 tagging SNPs in the NTRK2 gene region were genotyped in the discovery sample; 16 nominally associated SNPs were tested in two replication samples. Results: In the discovery analysis, 7 BDNF SNPs and 9 NTRK2 SNPs were nominally associated with treatment response. Three NTRK2 SNPs (rs10868223, rs1659412 and rs11140778) also showed associations in at least one replication sample and in the combined sample with the same direction of effects (PcorrP_{corr} = .018, PcorrP_{corr} = .015 and PcorrP_{corr} = .004, respectively). We observed an across-gene BDNF-NTRK2 SNP interaction for rs4923468 and rs1387926. No robust interaction of associated SNPs was found in an analysis of BDNF serum protein levels as a predictor for treatment outcome in a subset of 93 patients. Conclusions/Limitations: Although not all associations in the discovery analysis could be unambiguously replicated, the findings of the present study identified single nucleotide variations in the BDNF and NTRK2 genes that might be involved in antidepressant treatment outcome and that have not been previously reported in this context. These new variants need further validation in future association studies

    O CARÁTER SIMBÓLICO DA CIRCULAÇÃO DO SANGUE: UMA REFLEXÃO SOBRE A EXPLORAÇÃO DAS INFORMAÇÕES GENÉTICAS DE POVOS INDÍGENAS -- THE SYMBOLIC CHARACTER OF BLOOD CIRCULATION: A REFLECTION ON THE EXPLORATION OF THE GENETIC INFORMATION ABOUT INDIGENOUS PEOPLE

    Get PDF
    Neste artigo teve-se por objetivo refletir sobre o caráter simbólico da circulação do sangue e a exploração de informações genéticas de povos indígenas. Para esse fim, compararam-se dois casos, colocando em jogo a coleta de sangue irregular. O primeiro, a respeito do povo Yanomami, foi objeto de um acordo internacional, realizado entre o Ministério Público Federal e universidades norte-americanas, o que resultou no repatriamento das amostras de sangue ao Brasil. O segundo, a respeito do povo Karitiana, deu lugar a uma ação civil pública, proposta pelo Ministério Público Federal, que resultou em uma indenização ordenada pelo Tribunal Regional Federal da 1ª Região por dano moral sofrido pelos índios. Os dois casos convidam a examinar três questões sensíveis: a vulnerabilidade dos povos indígenas em face ao princípio do consentimento livre e esclarecido, exigido para a coleta do material genético; a insuficiência do princípio da gratuidade e o desafio da repartição de benefícios, quando se trata de explorar as informações genéticas humanas; e as recompensas comparadas da indenização financeira e da restituição das amostras em face às aspirações igualitárias dos povos indígenas em questão. Palavras-chave: Coleta de sangue. Consentimento livre e esclarecido. Contrato de repartição de benefícios. Dano moral. Povos indígenas

    Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder

    Get PDF
    Background Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and the high variability in treatment response. However, although several studies have been conducted, the molecular mechanisms underlying Li therapeutic effects remain unclear. Methods In order to identify molecular signatures and biological pathways associated with Li treatment response, we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients diagnosed with BD classified as Li responders (n = 11) or non-responders (n = 9). Results We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non-responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a modulatory effect of Li on several immune-related functions. Indeed, among the functional molecular nodes, we found NF-kappa B and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder patients, suggesting anti-inflammatory properties of Li. From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA-miRNA pairs, mainly involved in inflammatory/immune response. Conclusions Our results highlight that Li exerts modulatory effects on immune-related functions and that epigenetic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in Li response. Moreover, our data suggest the potentiality to integrate data coming from different high-throughput approaches as a tool to prioritize genes and pathways
    corecore