2,571 research outputs found

    Adding aerodynamic damping: the wing design for the Third Bosphorus Bridge

    Get PDF
    This paper is about the design of wing profiles adequate for giving to the Third Bosphorus Brige an additional aerodynamic damping on both vertical bending as well as torsional modes. The additional damping estimate procedure is made through a simplified quasi steady approach. A CFD approach has been used for a preliminary design and optimization of the wing profile and its position over the wind screen at the upwind and downwind location

    Wind tunnel validation of AeroDyn within LIFES50+ project: Imposed Surge and Pitch tests

    Get PDF
    This paper presents the first set of results of the steady and unsteady wind tunnel tests, performed at Politecnico di Milano wind tunnel, on a 1/75 rigid scale model of the DTU 10 MW wind turbine, within the LIFES50+ project. The aim of these tests is the validation of the open source code AeroDyn developed at NREL. Numerical and experimental steady results are compared in terms of thrust and torque coefficients, showing good agreement, as well as for unsteady measurements gathered with a 2 degree-of-freedom test rig, capable of imposing the displacements at the base of the model, and providing the surge and pitch motion of the floating offshore wind turbine (FOWT) scale model. The measurements of the unsteady test configuration are compared with AeroDyn/Dynin module results, implementing the generalized dynamic wake (GDW) model. Numerical and experimental comparison showed similar behaviours in terms of non linear hysteresis, however some discrepancies are herein reported and need further data analysis and interpretations about the aerodynamic integral quantities, with a special attention to the physics of the unsteady phenomenon

    Aerodynamic design methodology for wind tunnel tests of wind turbine rotors

    Get PDF
    This paper illustrates the methodology and the experimental verification of the design of a 1/75 aero-elastic scaled rotor of the DTU 10 MW reference wind turbine for wind tunnel tests. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low-Reynolds airfoils database, the SD7032 one was chosen for this purpose and a corresponding constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30−250×103 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist, in order to match at least the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre autoclave process was CNC manufactured based on B-Splines CAD definition of the external geometry given as an output of the design procedure. Wind tunnel tests at were carried out Politecnico di Milano on the whole 1/75 wind turbine scale model, confirming the successful aerodynamic design and manufacturing approaches. The experimental modal analysis carried out to verify the structural consistency of the scaled blade is also reported

    Gain Scheduling Control of a Gravimetric Blender with Vibrant Duct

    Get PDF
    Blender and feeder are very important devices in a polymer processing plant. The accuracy in delivering the polymer to the plastification unit is a fundamental property for the quality of the final product. To maximize accuracy and precision gravimetric feeder are the best available solution, which measure the weight of the hopper and the feeder. In these devices, it is possible to estimate the delivered flow based on a loss-in-weight method and to design closed loop control systems to regulate the polymer flow. Specifically, in this work vibrating duct feeder are considered which show a peculiar nonlinear dynamics due to the vibrating element. Then, a nonlinear gain scheduling controller has been designed using an implementation which guarantee satisfaction of the so called linearization property

    Full scale monitoring of the twin chimneys of the rovinari power plant

    Get PDF
    The presented paper deals with the structural identification and monitoring of two twin chimneys in very close arrangement. Due to twin arrangement, important interference effects are expected to modify the chimney response to wind action, causing vortex shedding and state-dependent excitation associated to the oscillatory motion of the leeward chimney, in and out of the windward chimney wake. The complexity of the physics of this problem is increased by the dependency of the aerodynamics of circular cylinders on Reynolds number; however, there is a weakness of literature about cylinders behaviour at critical and super-critical range of Reynolds number, due to experimental limitations. Also the International Committee on Industrial Chimneys (CICIND) does not provide, at present, any specific technical guideline about twin chimneys whose interaxis distance is less or equal two times the diameter, as in this case. For this reason a Tuned Mass Damper (TMD) has been installed in order to increase the damping of the chimney, as merely suggested. This work aims at assessing the effectiveness of the installed TMD and characterizing the tower dynamic behaviour itself due to the wind excitation, as well as providing full scale measurements for twin cylinders configuration at high Reynolds numbers

    Modal parameters identification and monitoring of two arches

    Get PDF
    The paper presents the results of the modal parameters identification and of the continuous monitoring of two arches built in the new area of Expo 2015 in Milan. The activities on the arches were performed during the erection stage and they were planned as a consequence of preliminary studies performed at Politecnico di Milano wind tunnel, that highlighted dynamic instability due to the wind. In particular, the first two bending modes of the structures showed a critical behaviour and for this reason a TMD (Tuned Mass Damping) system was designed in order to control these modes. At first, frequencies, damping and modal deflected shapes were evaluated in order to check the numerical FEM model, to tune the TMD system and to check its correct functioning. The two arches were then monitored for several months to observe their dynamic behaviour under different wind conditions. A good database about the strongest and the most frequent winds in the site was obtained. The accelerations registered under strong wind conditions did not reach dangerous levels for the structures, moreover these results showed a good agreement with the wind tunnel ones

    Aeroelastic stability of two long-span arch structures: A collaborative experience in two wind tunnel facilities

    Get PDF
    In this paper, a rare example of comparison between sectional and full-aeroelastic model tests is presented. Interestingly, the experiments were conducted in two very different wind tunnel facilities by different research teams. The study concerns two long-span steel arch structures recently built in Milan, Italy, for Expo 2015 World Fair. The structures have only aesthetic purposes and are therefore very flexible and light, which makes them sensitive to wind-induced excitation and prone to aeroelastic instabilities. In particular, in smooth flow an interesting phenomenon of interference between vortex-induced vibration and galloping was observed up to high values of the Scruton number. This aeroelastic instability is very dangerous as large-amplitude vibrations can occur in wind speed ranges where they are not expected, at least for what classical theories for vortex-induced vibration and quasi-steady galloping are concerned. Moreover, the provisions of Eurocode 1 resulted clearly unsuitable and non-conservative to address such a phenomenon. Despite the differences in the facilities and in the models, a good agreement was found between the results obtained in the two laboratories. The major discrepancies were observed in the transitional behavior for intermediate values of the Scruton number, the sectional model showing a more unstable behavior. The tests on the full-aeroelastic model also allowed considering the effect of the angle of wind exposure of the structures, both the in-plane and the out-of-plane vibrations of the arches and the dynamic response to turbulent wind. In particular, a set of tests in smooth flow was performed accounting for the presence of the other arch and of the surrounding buildings. A particular dynamic excitation of the in-plane flexural modes of the structures was observed in well defined ranges of flow speeds when one arch is in the wake of the other. Finally, both experimental campaigns highlighted the need for the installation of tuned mass dampers on the real structures to guarantee their safety. The effectiveness of these devices against the observed galloping-type instability was also verified through wind tunnel tests on the full-aeroelastic model

    On the functional design of the DTU10 MW wind turbine scale model of LIFES50+ project

    Get PDF
    This paper illustrates the mechatronic design of the wind tunnel scale model of the DTU 10MW reference wind turbine, for the LIFES50+ H2020 European project. This model was designed with the final goal of controlling the angle of attack of each blade by means of miniaturized servomotors, for implementing advanced individual pitch control (IPC) laws on a Floating Offshore Wind Turbine (FOWT) 1/75 scale model. Many design constraints were to be respected: among others, the rotor-nacelle overall mass due to aero-elastic scaling, the limited space of the nacelle, where to put three miniaturized servomotors and the main shaft one, with their own inverters/controllers, the slip rings for electrical rotary contacts, the highest stiffness as possible for the nacelle support and the blade-rotor connections, for ensuring the proper kinematic constraint, considering the first flapwise blade natural frequency, the performance of the servomotors to guarantee the wide frequency band due to frequency scale factors, etc. The design and technical solutions are herein presented and discussed, along with an overview of the building and verification process. Also a discussion about the goals achieved and constraints respected for the rigid wind turbine scale model (LIFES50+ deliverable D.3.1) and the further possible improvements for the IPC-aero-elastic scale model, which is being finalized at the time of this paper
    corecore