11,312 research outputs found

    Low Luminosity States of the Black Hole Candidate GX~339--4. II. Timing Analysis

    Full text link
    Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f approximately equal to 0.3 Hz QPO. The broad band (10^{-3}-10^2 Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 0.005-10 Hz but shows evidence of a dip at f approximately equal to 1 Hz. This is the region of overlap between the broad Lorentzian fits to the PSD. Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 10 Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.Comment: To Appear in the AStrophysical Journa

    A Lensed Arc in the Low Redshift Cluster Abell 2124

    Full text link
    We report the discovery of an arc-like object 27" from the center of the cD galaxy in the redshift z=0.066z=0.066 cluster A2124. Observations with the Keck II telescope reveal that the object is a background galaxy at z=0.573z=0.573, apparently lensed into an arc of length \sim 8 \farcs5 and total R magnitude mR=20.86±0.07m_R = 20.86\pm0.07. The width of the arc is resolved; we estimate it to be \sim0\farcs6 after correcting for seeing. A lens model of the A2124 core mass distribution consistent with the cluster galaxy velocity dispersion reproduces the observed arc geometry and indicates a magnification factor \gta 9. With this magnification, the strength of the [OII] \lambda 3727 line implies a star-formation rate of SFR \sim 0.4 h^{-2}\msun yr^{-1}$. A2124 thus appears to be the lowest redshift cluster known to exhibit strong lensing of a distant background galaxy.Comment: 6 pages using emulateapj.sty; 4 Postscript figures; Figure 4 uses color. Accepted for publication, but ApJ Letters' new policy of counting data images makes the manuscript too long; will appear in main journal. This final version has minor correction

    Inference on Treatment Effects After Selection Amongst High-Dimensional Controls

    Get PDF
    We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances. Our analysis allows the number of controls to be much larger than the sample size. To make informative inference feasible, we require the model to be approximately sparse; that is, we require that the effect of confounding factors can be controlled for up to a small approximation error by conditioning on a relatively small number of controls whose identities are unknown. The latter condition makes it possible to estimate the treatment effect by selecting approximately the right set of controls. We develop a novel estimation and uniformly valid inference method for the treatment effect in this setting, called the "post-double-selection" method. Our results apply to Lasso-type methods used for covariate selection as well as to any other model selection method that is able to find a sparse model with good approximation properties. The main attractive feature of our method is that it allows for imperfect selection of the controls and provides confidence intervals that are valid uniformly across a large class of models. In contrast, standard post-model selection estimators fail to provide uniform inference even in simple cases with a small, fixed number of controls. Thus our method resolves the problem of uniform inference after model selection for a large, interesting class of models. We illustrate the use of the developed methods with numerical simulations and an application to the effect of abortion on crime rates

    A Unified Description of the Timing Features of Accreting X-ray Binaries

    Get PDF
    We study an empirical model for a unified description of the power spectra of accreting neutron stars and black holes. This description is based on a superposition of multiple Lorentzians and offers the advantage that all QPO and noise components are dealt with in the same way, without the need of deciding in advance the nature of each component. This approach also allows us to compare frequencies of features with high and low coherences in a consistent manner and greatly facilitates comparison of power spectra across a wide range of source types and states. We apply the model to six sources, the low-luminosity X-ray bursters 1E 1724-3045, SLX 1735-269 and GS 1826-24, the high-latitude transient XTE J1118+480, the bright system Cir X-1, and the Z source GX 17+2. We find that it provides a good description of the observed spectra, without the need for a scale-free (1/f) component. We update previously reported correlations between characteristic frequencies of timing features in the light of this new approach and discuss similarities between different types of systems which may point towards similar underlying physics.Comment: 13 pages, to appear in The Astrophysical Journa

    Pivotal estimation in high-dimensional regression via linear programming

    Full text link
    We propose a new method of estimation in high-dimensional linear regression model. It allows for very weak distributional assumptions including heteroscedasticity, and does not require the knowledge of the variance of random errors. The method is based on linear programming only, so that its numerical implementation is faster than for previously known techniques using conic programs, and it allows one to deal with higher dimensional models. We provide upper bounds for estimation and prediction errors of the proposed estimator showing that it achieves the same rate as in the more restrictive situation of fixed design and i.i.d. Gaussian errors with known variance. Following Gautier and Tsybakov (2011), we obtain the results under weaker sensitivity assumptions than the restricted eigenvalue or assimilated conditions

    Playing Quantum Physics Jeopardy with zero-energy eigenstates

    Full text link
    We describe an example of an exact, quantitative Jeopardy-type quantum mechanics problem. This problem type is based on the conditions in one-dimensional quantum systems that allow an energy eigenstate for the infinite square well to have zero curvature and zero energy when suitable Dirac delta functions are added. This condition and its solution are not often discussed in quantum mechanics texts and have interesting pedagogical consequences.Comment: 8 pages, 3 figures, requires graphicx and epsfig packages. Additional information, including individual files containing the Worksheet and a Worksheet template, are available at http://webphysics.davidson.edu/mjb/jeopardy

    Weighing the black holes in ultraluminous X-ray sources through timing

    Full text link
    We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane'', populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive active galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.Comment: 5 pages, 2 figures, Accepted by MNRA

    The X-ray Properties of Low-Frequency Quasi-Periodic Oscillations from GRS 1915+105 up to 120 keV

    Get PDF
    We present a study of the properties of strong 0.8-3.0 Hz quasi-periodic oscillations (QPOs) that occurred during 1997 RXTE observations of the microquasar GRS 1915+105 in the low-hard state. The high count rates allow us to track individual QPO peaks, and we exploit this to develop a QPO folding technique. In contrast to previous QPO studies with RXTE, we emphasize the high energy QPO properties and report the detection of a QPO in the 60-124 keV energy band. Our technique allows us, for the first time, to measure the phase of the QPO harmonics relative to the fundamental. Variation in this phase difference leads to changes in the shape of the QPO profile with energy and over time. The strength of the QPO fundamental increases up to 19 keV, but the data do not suggest that the strength continues to increase above this energy. In some cases, the QPO amplitudes in the 30-60 keV and 60-124 keV energy bands are significantly less than in the 13-19 keV and 19-29 keV energy bands. We also use our technique to measure the phase lag of the QPO fundamental and harmonics. In the case where negative phase lags are detected for the fundamental, positive phase lags are detected for the first harmonic.Comment: Submitted to ApJ, Refereed, 9 page
    corecore