2,475 research outputs found
Non-Minimal String Corrections And Supergravity
We reconsider the well-known issue of string corrections to Supergravity
theory. Our treatment is carried out to second order in the string slope
parameter. We establish a procedure for solving the Bianchi identities in the
non minimal case, and we solve a long standing problem in the perturbative
expansion of D=10, N=1 string corrected Supergravity, obtaining the H sector
tensors, torsions and curvatures.Comment: 19 pages, PACS number: 04.65.+
Noncommutative Coulombic Monopole
We have constructed the appropriate Hamiltonian of the noncommutative
coulombic monopole (i.e. the noncommutative hydrogen atom with a monopole). The
energy levels of this system have been calculated, discussed and compared with
the noncommutative hydrogen atom ones. The main emphasis is put on the ground
state. In addition, the Stark effect for the noncommutative coulombic monopole
has been studied.Comment: 5 pages, PACS numbers: 03.65.-w, 14.80.Hv, 02.40.Gh, 32.60.+
Constant magnetic field and 2d non-commutative inverted oscillator
We consider a two-dimensional non-commutative inverted oscillator in the
presence of a constant magnetic field, coupled to the system in a
``symplectic'' and ``Poisson'' way. We show that it has a discrete energy
spectrum for some value of the magnetic field.Comment: 7 pages, LaTeX file, no figures, PACS number: 03.65.-
Intersecting Attractors
We apply the entropy formalism to the study of the near-horizon geometry of
extremal black p-brane intersections in D>5 dimensional supergravities. The
scalar flow towards the horizon is described in terms an effective potential
given by the superposition of the kinetic energies of all the forms under which
the brane is charged. At the horizon active scalars get fixed to the minima of
the effective potential and the entropy function is given in terms of U-duality
invariants built entirely out of the black p-brane charges. The resulting
entropy function reproduces the central charges of the dual boundary CFT and
gives rise to a Bekenstein-Hawking like area law. The results are illustrated
in the case of black holes and black string intersections in D=6, 7, 8
supergravities where the effective potentials, attractor equations, moduli
spaces and entropy/central charges are worked out in full detail.Comment: 1+41 pages, 2 Table
The geometry of N=4 twisted string
We compare N=2 string and N=4 topological string within the framework of the
sigma model approach. Being classically equivalent on a flat background, the
theories are shown to lead to different geometries when put in a curved space.
In contrast to the well studied Kaehler geometry characterising the former
case, in the latter case a manifold has to admit a covariantly constant
holomorphic two-form in order to support an N=4 twisted supersymmetry. This
restricts the holonomy group to be a subgroup of SU(1,1) and leads to a
Ricci--flat manifold. We speculate that, the N=4 topological formalism is an
appropriate framework to smooth down ultraviolet divergences intrinsic to the
N=2 theory.Comment: 20 pages, LaTe
Electric Polarizability of Neutral Hadrons from Lattice QCD
By simulating a uniform electric field on a lattice and measuring the change
in the rest mass, we calculate the electric polarizability of neutral mesons
and baryons using the methods of quenched lattice QCD. Specifically, we measure
the electric polarizability coefficient from the quadratic response to the
electric field for 10 particles: the vector mesons and ; the
octet baryons n, , , , and ;
and the decouplet baryons , , and .
Independent calculations using two fermion actions were done for consistency
and comparison purposes. One calculation uses Wilson fermions with a lattice
spacing of fm. The other uses tadpole improved L\"usher-Weiss gauge
fields and clover quark action with a lattice spacing fm. Our results
for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure
A note on N=4 supersymmetric mechanics on K\"ahler manifolds
The geometric models of N=4 supersymmetric mechanics with
(2d.2d)_{\DC}-dimensional phase space are proposed, which can be viewed as
one-dimensional counterparts of two-dimensional N=2 supersymmetric sigma-models
by Alvarez-Gaum\'e and Freedman. The related construction of supersymmetric
mechanics whose phase space is a K\"ahler supermanifold is considered. Also,
its relation with antisymplectic geometry is discussed.Comment: 4 pages, revte
Non-supersymmetric Extremal RN-AdS Black Holes in N=2 Gauged Supergravity
We investigate extremal Reissner-Nordstrom-AdS black holes in
four-dimensional N=2 abelian gauged supergravity. We find a new attractor
equation which is not reduced to the one in the asymptotically flat spacetime.
Focusing on so-called the T^3-model with a single neutral vector multiplet, we
obtain non-supersymmetric extremal Reissner-Nordstrom-AdS black hole solutions
with regular event horizon in the D0-D4 and the D2-D6 charge configurations.
The negative cosmological constant emerges even without the Fayet-Iliopoulos
parameters. Furthermore, we also argue the formal description of the
non-supersymmetric black hole solutions of the T^3-model and the STU-model in
generic configurations.Comment: 23 pages, accepted version in JHE
- …
