2,475 research outputs found

    Non-Minimal String Corrections And Supergravity

    Full text link
    We reconsider the well-known issue of string corrections to Supergravity theory. Our treatment is carried out to second order in the string slope parameter. We establish a procedure for solving the Bianchi identities in the non minimal case, and we solve a long standing problem in the perturbative expansion of D=10, N=1 string corrected Supergravity, obtaining the H sector tensors, torsions and curvatures.Comment: 19 pages, PACS number: 04.65.+

    Noncommutative Coulombic Monopole

    Full text link
    We have constructed the appropriate Hamiltonian of the noncommutative coulombic monopole (i.e. the noncommutative hydrogen atom with a monopole). The energy levels of this system have been calculated, discussed and compared with the noncommutative hydrogen atom ones. The main emphasis is put on the ground state. In addition, the Stark effect for the noncommutative coulombic monopole has been studied.Comment: 5 pages, PACS numbers: 03.65.-w, 14.80.Hv, 02.40.Gh, 32.60.+

    Constant magnetic field and 2d non-commutative inverted oscillator

    Get PDF
    We consider a two-dimensional non-commutative inverted oscillator in the presence of a constant magnetic field, coupled to the system in a ``symplectic'' and ``Poisson'' way. We show that it has a discrete energy spectrum for some value of the magnetic field.Comment: 7 pages, LaTeX file, no figures, PACS number: 03.65.-

    Intersecting Attractors

    Get PDF
    We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superposition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.Comment: 1+41 pages, 2 Table

    The geometry of N=4 twisted string

    Full text link
    We compare N=2 string and N=4 topological string within the framework of the sigma model approach. Being classically equivalent on a flat background, the theories are shown to lead to different geometries when put in a curved space. In contrast to the well studied Kaehler geometry characterising the former case, in the latter case a manifold has to admit a covariantly constant holomorphic two-form in order to support an N=4 twisted supersymmetry. This restricts the holonomy group to be a subgroup of SU(1,1) and leads to a Ricci--flat manifold. We speculate that, the N=4 topological formalism is an appropriate framework to smooth down ultraviolet divergences intrinsic to the N=2 theory.Comment: 20 pages, LaTe

    Electric Polarizability of Neutral Hadrons from Lattice QCD

    Full text link
    By simulating a uniform electric field on a lattice and measuring the change in the rest mass, we calculate the electric polarizability of neutral mesons and baryons using the methods of quenched lattice QCD. Specifically, we measure the electric polarizability coefficient from the quadratic response to the electric field for 10 particles: the vector mesons ρ0\rho^0 and K0K^{*0}; the octet baryons n, Σ0\Sigma^0, Λo0\Lambda_{o}^{0}, Λs0\Lambda_{s}^{0}, and Ξ0\Xi^0; and the decouplet baryons Δ0\Delta^0, Σ0\Sigma^{*0}, and Ξ0\Xi^{*0}. Independent calculations using two fermion actions were done for consistency and comparison purposes. One calculation uses Wilson fermions with a lattice spacing of a=0.10a=0.10 fm. The other uses tadpole improved L\"usher-Weiss gauge fields and clover quark action with a lattice spacing a=0.17a=0.17 fm. Our results for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure

    A note on N=4 supersymmetric mechanics on K\"ahler manifolds

    Full text link
    The geometric models of N=4 supersymmetric mechanics with (2d.2d)_{\DC}-dimensional phase space are proposed, which can be viewed as one-dimensional counterparts of two-dimensional N=2 supersymmetric sigma-models by Alvarez-Gaum\'e and Freedman. The related construction of supersymmetric mechanics whose phase space is a K\"ahler supermanifold is considered. Also, its relation with antisymplectic geometry is discussed.Comment: 4 pages, revte

    Non-supersymmetric Extremal RN-AdS Black Holes in N=2 Gauged Supergravity

    Full text link
    We investigate extremal Reissner-Nordstrom-AdS black holes in four-dimensional N=2 abelian gauged supergravity. We find a new attractor equation which is not reduced to the one in the asymptotically flat spacetime. Focusing on so-called the T^3-model with a single neutral vector multiplet, we obtain non-supersymmetric extremal Reissner-Nordstrom-AdS black hole solutions with regular event horizon in the D0-D4 and the D2-D6 charge configurations. The negative cosmological constant emerges even without the Fayet-Iliopoulos parameters. Furthermore, we also argue the formal description of the non-supersymmetric black hole solutions of the T^3-model and the STU-model in generic configurations.Comment: 23 pages, accepted version in JHE
    corecore