30 research outputs found

    Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women

    Get PDF
    BACKGROUND: Diets high in either resistant starch or protein have been shown to aid in weight management. We examined the effects of meals high in non-resistant or resistant starch with and without elevated protein intake on substrate utilization, energy expenditure, and satiety in lean and overweight/obese women. METHODS: Women of varying levels of adiposity consumed one of four pancake test meals in a single-blind, randomized crossover design: 1) waxy maize (control) starch (WMS); 2) waxy maize starch and whey protein (WMS+WP); 3) resistant starch (RS); or 4) RS and whey protein (RS+WP). RESULTS: Total post-prandial energy expenditure did not differ following any of the four test meals (WMS = 197.9 ± 8.9; WMS+WP = 188 ± 8.1; RS = 191.9 ± 8.9; RS+WP = 195.8 ± 8.7, kcals/180 min), although the combination of RS+WP, but not either intervention alone, significantly increased (P <0.01) fat oxidation (WMS = 89.5 ± 5.4; WMS+WP = 84.5 ± 7.2; RS = 97.4 ± 5.4; RS+WP = 107.8 ± 5.4, kcals/180 min). Measures of fullness increased (125 % vs. 45 %) and hunger decreased (55 % vs. 16 %) following WP supplemented versus non-whey conditions (WMS+WP, RS+WP vs. WMS, RS), whereas circulating hunger and satiety factors were not different among any of the test meals. However, peptide YY (PYY) was significantly elevated at 180 min following RS+WP meal. CONCLUSIONS: The combined consumption of dietary resistant starch and protein increases fat oxidation, PYY, and enhances feelings of satiety and fullness to levels that may be clinically relevant if maintained under chronic conditions. This trial was registered at clinicaltrials.gov as NCT02418429

    Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: A randomized controlled trial

    Get PDF
    Background/Objective: Dairy protein seems to reduce appetite by increasing satiety and delaying the return of hunger and subsequently lowering energy intake compared with fat or carbohydrate. The aim of this study was to compare the effect of whey with that of casein proteins on satiety in overweight/obese individuals. Methods/Subjects: This was a randomized, parallel-design 12-week-long study. Seventy subjects with a body mass index between 25 and 40 kg/m2 and aged 18–65 years were randomized into one of three supplement groups: glucose control (n=25), casein (n=20) or whey (n=25) protein. Before commencing the study, at weeks 6 and 12 of the treatment, a Visual Analogue Scale (VAS) was used to measure subjective sensations of appetite before lunch and before dinner. Results: Rating for VAS (mm) at 6 and 12 weeks showed significantly higher satiety in the whey group compared with the casein (P=0.017 and P=0.025, respectively) or control (P=0.024 and P=0.032, respectively) groups when measured before lunch. Similarly, at 6 and 12 weeks, the score for fullness was also significantly higher in the whey group compared with both casein (P=0.038 and P=0.022, respectively) and control (P=0.020 and P=0.030, respectively) groups. However, these short-term effects on satiety from dairy whey proteins did not have any long-term effects on energy intake or body weight over 12 weeks compared with casein. Conclusions: Collectively, whey protein supplementation appears to have a positive and acute postprandial effect on satiety and fullness compared with casein and carbohydrate supplementation in overweight and obese individuals

    β-Glucan content and in vitro bile-acid binding capacity of Agaricus bisporus and Pleurotus spp.

    Full text link
    The cholesterol lowering properties of oats and barley, attributed to their high β-glucan content, are well established, but it remains unclear whether mushrooms, also rich in β-glucan, exhibit a similar functionality

    Australian mushroom β-glucan content and in vitro bile-acid binding capacity compared to oats

    Full text link
    Australian mushroom β-glucan content and in vitro bile-acid binding capacity compared to oat

    Cereal fructan extracts alter intestinal fermentation to reduce adiposity and increase mineral retention compared to oligofructose

    No full text
    © 2018, © Crown. Purpose: Intestinal fermentation of inulin-type fructans, including oligofructose, can modulate adiposity, improve energy regulation, and increase mineral absorption. We aimed to determine whether cereal fructans had greater effects on reducing adiposity and improving mineral absorption compared with oligofructose. Methods: Thirty-two male Sprague–Dawley rats were randomly assigned to one of four dietary treatments that contained 0% fructan (control), or 5% fructan provided by oligofructose (OF), a barley grain fraction (BGF), or a wheat stem fraction (WSF). After 1 week on the diets, mineral absorption and retention was assessed. At 4 weeks, blood samples were collected for gut hormone analysis, adipose depots were removed and weighed, and caecal digesta was analyzed for pH and short-chain fatty acids (SCFA). Results: The BGF and WSF, but not OF, had lower total visceral fat weights than the Control (p &lt; 0.05). The fructan diets all lowered caecal pH and raised caecal digesta weight and total SCFA content, in comparison to the Control. Caecal propionate levels for OF were similar to the Control and higher for WSF (p &lt; 0.05). Plasma peptide YY and glucagon-like peptide-1 levels were elevated for all fructan groups when compared to Control (p &lt; 0.001) and gastric inhibitory peptide was lower for the WSF compared to the other groups (p &lt; 0.05). The fructan diets improved calcium and magnesium retention, which was highest for WSF (p &lt; 0.05). BGF and WSF in comparison to OF showed differential effects on fermentation, gut hormone levels, and adiposity. Conclusions: Cereal fructan sources have favorable metabolic effects that suggest greater improvements in energy regulation and mineral status to those reported for oligofructose
    corecore