250 research outputs found

    Involvement of Basal Ganglia Network in Motor Disabilities Induced by Typical Antipsychotics

    Get PDF
    BACKGROUND:Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, alpha-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat. METHODS AND FINDINGS:The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats. We show that alpha-flupentixol induced EPS paralleled by a decrease in the firing rate and a disorganization of the firing pattern in both substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN). Furthermore, alpha-flupentixol induced an increase in the firing rate of globus pallidus (GP) neurons. In the striatum, we recorded two populations of medium spiny neurons (MSNs) after their antidromic identification. At basal level, both striato-pallidal and striato-nigral MSNs were found to be unaffected by alpha-flupentixol. However, during electrical cortico-striatal activation only striato-pallidal, but not striato-nigral, MSNs were found to be inhibited by alpha-flupentixol. Together, our results suggest that the changes in STN and SNr neuronal activity are a consequence of increased neuronal activity of globus pallidus (GP). Indeed, after selective GP lesion, alpha-flupentixol failed to induce EPS and to alter STN neuronal activity. CONCLUSION:Our study reports strong evidence to show that hypokinesia and catalepsy induced by alpha-flupentixol are triggered by dramatic changes occurring in basal ganglia network. We provide new insight into the key role of GP in the pathophysiology of APD-induced EPS suggesting that the GP can be considered as a potential target for the treatment of EPS

    The contribution of rat studies to contemporary knowledge of Major Depressive Disorder: Results from citation analysis

    Get PDF
    Funding: This study was financed by Animalfree Research—Switzerland, a grant from the Johns Hopkins Center for Alternatives to Animal Testing (CAAT) and by Portuguese National Funds through FCT—Fundação para a Ciência e a Tecnologia, within the CFCUL Unit funding UIDB/00678/2020. TM thanks partial support by CEAUL (funded by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2019). FP thanks FCT/MCTES for the financial support to CESAM (UIDP/50017/2020 and UIDB/50017/2020), through national funds. Open access publication costs were covered by Animalfree Research-Switzerland and by funding provided by the Ketty and Leif Hjordt Foundation.Major depressive disorder (MDD) is the most severe depression type and one of the leading causes of morbidity worldwide. Animal models are widely used to understand MDD etiology, pathogenesis, and treatment, but the efficacy of this research for patients has barely been systematically evaluated. Such evaluation is important given the resource consumption and ethical concerns incurred by animal use. We used the citation tracking facilities within Web of Science and Scopus to locate citations of original research papers on rats related to MDD published prior to 2013—to allow adequate time for citations—identified in PubMed and Scopus by relevant search terms. Resulting citations were thematically coded in eight categories, and descriptive statistics were calculated. 178 publications describing relevant rat studies were identified. They were cited 8,712 times. More than half (4,633) of their citations were by other animal studies. 794 (less than 10%) were by human medical papers. Citation analysis indicates that rat model research has contributed very little to the contemporary clinical understanding of MDD. This suggests a misuse of limited funding hence supporting a change in allocation of research and development funds targeting this disorder to maximise benefits for patients.Publisher PDFPeer reviewe

    Simultaneous determination of dopamine, uric acid and estriol in maternal urine samples based on the synergetic effect of reduced graphene oxide, silver nanowires and silver nanoparticles in their ternary 3D nanocomposite

    Get PDF
    A facile and efficient electrochemical biosensing platform based on screen printed carbon electrode (SPCE) modified with three-dimensional (3D) nanocomposite consists of reduced graphene oxide (RGO) with the insertion of silver nanowires (AgNWs) followed by the anchoring of silver nanoparticles (AgNPs) is constructed as RGO/AgNWs/AgNPs/SPCE for the simultaneous determination of dopamine (DA), uric acid (UA) and estriol (EST). The morphology characteristic and surface elemental composition of RGO/AgNWs/AgNPs nanocomposite are investigated by field-emission scanning electron microscope, transmission electron microscope and X-ray photoelectron spectroscope. Cyclic voltammetry, electrochemical impedance spectroscopy, linear sweep voltammetry and differential pulse voltammetry are utilized to explore the electrochemical performances of the constructed electrodes. Due to abundant active sites and excellent electrocatalytic activity of the nanocomposite, the RGO/AgNWs/AgNPs/SPCE sensor exhibits well-resolved oxidation peaks and enhanced oxidation peak currents in the ternary mixture of DA, UA and EST with respective linear response ranges of 0.6 to 50 μM, 1 to 100 μM and 1 to 90 μM and detection limits (S/N = 3) of 0.16 μM, 0.58 μM and 0.58 μM, respectively. Moreover, the constructed biosensor exhibits good selectivity, reproducibility and stability, and excellent performance in determining DA, UA and EST in synthetic urine samples with excellent recovery. The results reveal that the RGO/AgNWs/AgNPs nanocomposite is a promising candidate for advanced electrode material in electrochemical sensing field and possesses great application prospects in further sensing researches

    Acute stress impairs reward learning in men

    Get PDF
    Acute stress is ubiquitous in everyday life, but the extent to which acute stress affects how people learn from the outcomes of their choices is still poorly understood. Here, we investigate how acute stress impacts reward and punishment learning in men using a reinforcement-learning task. Sixty-two male participants performed the task whilst under stress and control conditions. We observed that acute stress impaired participants' choice performance towards monetary gains, but not losses. To unravel the mechanism(s) underlying such impairment, we fitted a reinforcement-learning model to participants' trial-by-trial choices. Computational modeling indicated that under acute stress participants learned more slowly from positive prediction errors - when the outcomes were better than expected - consistent with stress-induced dopamine disruptions. Such mechanistic understanding of how acute stress impairs reward learning is particularly important given the pervasiveness of stress in our daily life and the impact that stress can have on our wellbeing and mental health.ortuguese Foundation for Science and Technology (FCT) to A. Seara-Cardoso [PTDC/MHC-PCN/2296/2014, co-financed by FEDER through COMPETE2020 under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-016747)] and to A. Mesquita (IF/00750/2015). J. Carvalheiro was supported by a FCT PhD fellowship (PD/BD/128467/2017). This study was conducted at the Psychology Research Centre (PSI/01662), School of Psychology, University of Minho, supported by FCT and the Portuguese Ministry of Science, Technology and Higher Education (UID/PSI/01662/2019), through national funds (PIDDAC

    GABAergic Gene Expression in Postmortem Hippocampus from Alcoholics and Cocaine Addicts; Corresponding Findings in Alcohol-Naïve P and NP Rats

    Get PDF
    BACKGROUND:By performing identical studies in humans and rats, we attempted to distinguish vulnerability factors for addiction from neurobiological effects of chronic drug exposure. We focused on the GABAergic system within the hippocampus, a brain region that is a constituent of the memory/conditioning neuronal circuitry of addiction that is considered to be important in drug reinforcement behaviors in animals and craving and relapse in humans. METHODOLOGY:Using RNA-Seq we quantified mRNA transcripts in postmortem total hippocampus from alcoholics, cocaine addicts and controls and also from alcohol-naïve, alcohol preferring (P) and non-preferring (NP) rats selectively bred for extremes of alcohol-seeking behavior that also show a general addictive tendency. A pathway-targeted analysis of 25 GABAergic genes encoding proteins implicated in GABA synthesis, metabolism, synaptic transmission and re-uptake was undertaken. PRINCIPAL FINDINGS:Directionally consistent and biologically plausible overlapping and specific changes were detected: 14/25 of the human genes and 12/25 of the rat genes showed nominally significant differences in gene expression (global p values: 9×10⁻¹⁴, 7×10⁻¹¹ respectively). Principal FDR-corrected findings were that GABBR1 was down-regulated in alcoholics, cocaine addicts and P rats with congruent findings in NSF, implicated in GABAB signaling efficacy, potentially resulting in increased synaptic GABA. GABRG2, encoding the gamma2 subunit required for postsynaptic clustering of GABAA receptors together with GPHN, encoding the associated scaffolding protein gephryin, were both down-regulated in alcoholics and cocaine addicts but were both up-regulated in P rats. There were also expression changes specific to cocaine addicts (GAD1, GAD2), alcoholics (GABRA2) and P rats (ABAT, GABRG3). CONCLUSIONS/SIGNIFICANCE:Our study confirms the involvement of the GABAergic system in alcoholism but also reveals a hippocampal GABA input in cocaine addiction. Congruent findings in human addicts and P rats provide clues to predisposing factors for alcohol and drug addiction. Finally, the results of this study have therapeutic implications

    Desire and Dread from the Nucleus Accumbens: Cortical Glutamate and Subcortical GABA Differentially Generate Motivation and Hedonic Impact in the Rat

    Get PDF
    Background: GABAergic signals to the nucleus accumbens (NAc) shell arise from predominantly subcortical sources whereas glutamatergic signals arise mainly from cortical-related sources. Here we contrasted GABAergic and glutamatergic generation of hedonics versus motivation processes, as a proxy for comparing subcortical and cortical controls of emotion. Local disruptions of either signals in medial shell of NAc generate intense motivated behaviors corresponding to desire and/or dread, along a rostrocaudal gradient. GABA or glutamate disruptions in rostral shell generate appetitive motivation whereas disruptions in caudal shell elicit fearful motivation. However, GABA and glutamate signals in NAc differ in important ways, despite the similarity of their rostrocaudal motivation gradients. Methodology/Principal Findings: Microinjections of a GABAA agonist (muscimol), or of a glutamate AMPA antagonist (DNQX) in medial shell of rats were assessed for generation of hedonic ‘‘liking’ ’ or ‘‘disliking’ ’ by measuring orofacial affective reactions to sucrose-quinine taste. Motivation generation was independently assessed measuring effects on eating versus natural defensive behaviors. For GABAergic microinjections, we found that the desire-dread motivation gradient was mirrored by an equivalent hedonic gradient that amplified affective taste ‘‘liking’ ’ (at rostral sites) versus ‘‘disliking’ ’ (at caudal sites). However, manipulation of glutamatergic signals completely failed to alter pleasure-displeasure reactions to sensory hedonic impact, despite producing a strong rostrocaudal gradient of motivation

    Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling

    Get PDF
    Among neurobiological mechanisms underlying antidepressant properties of ketamine, structural remodeling of prefrontal and hippocampal neurons has been proposed as critical. The suggested mechanism involves downstream activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which trigger mammalian target of rapamycin (mTOR)-dependent structural plasticity via brain-derived neurotrophic factor (BDNF) and protein neo-synthesis. We evaluated whether ketamine elicits similar molecular events in dopaminergic (DA) neurons, known to be affected in mood disorders, using a novel, translational strategy that involved mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. Sixty minutes exposure to ketamine elicited concentration-dependent increases of dendritic arborization and soma size in both mouse and human cultures as measured 72 hours after application. These structural effects were blocked by mTOR complex/signaling inhibitors like rapamycin. Direct evidence of mTOR activation by ketamine was revealed by its induction of p70S6 kinase. All effects of ketamine were abolished by AMPA receptor antagonists and mimicked by the AMPA-positive allosteric modulator CX614. Inhibition of BDNF signaling prevented induction of structural plasticity by ketamine or CX614. Furthermore, the actions of ketamine required functionally intact dopamine D3 receptors (D3R), as its effects were abolished by selective D3R antagonists and absent in D3R knockout preparations. Finally, the ketamine metabolite (2R,6R)-hydroxynorketamine mimicked ketamine effects at sub-micromolar concentrations. These data indicate that ketamine elicits structural plasticity by recruitment of AMPAR, mTOR and BDNF signaling in both mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. These observations are of likely relevance to the influence of ketamine upon mood and its other functional actions in vivo.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.241

    Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens

    Get PDF
    Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward

    GABA Receptors and the Pharmacology of Sleep

    Get PDF
    Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia
    corecore