35 research outputs found
Adaptive Evolution of Leptin in Heterothermic Bats
Heterothermy (hibernation and daily torpor) is a key strategy that animals use to survive in harsh conditions and is widely employed by bats, which are found in diverse habitats and climates. Bats comprise more than 20% of all mammals and although heterothermy occurs in divergent lineages of bats, suggesting it might be an ancestral condition, its evolutionary history is complicated by complex phylogeographic patterns. Here, we use Leptin, which regulates lipid metabolism and is crucial for thermogenesis of hibernators, as molecular marker and combine physiological, molecular and biochemical analyses to explore the possible evolutionary history of heterothermy in bat. The two tropical fruit bats examined here were homeothermic; in contrast, the two tropical insectivorous bats were clearly heterothermic. Molecular evolutionary analyses of the Leptin gene revealed positive selection in the ancestors of all bats, which was maintained or further enhanced the lineages comprising mostly heterothermic species. In contrast, we found evidence of relaxed selection in homeothermic species. Biochemical assays of bat Leptin on the activity on adipocyte degradation revealed that Leptin in heterothermic bats was more lipolytic than in homeothermic bats. This shows that evolutionary sequence changes in this protein are indeed functional and support the interpretation of our physiological results and the molecular evolutionary analyses. Our combined data strongly support the hypothesis that heterothermy is the ancestral state of bats and that this involved adaptive changes in Leptin. Subsequent loss of heterothermy in some tropical lineages of bats likely was associated with range and dietary shifts
Identification and classification of the genomes of novel microviruses in poultry slaughterhouse
Microviridae is a family of phages with circular ssDNA genomes and they are widely found in various environments and organisms. In this study, virome techniques were employed to explore potential members of Microviridae in a poultry slaughterhouse, leading to the identification of 98 novel and complete microvirus genomes. Using a similarity clustering network classification approach, these viruses were found to belong to at least 6 new subfamilies within Microviridae and 3 higher-level taxonomic units. Genome size, GC content and genome structure of these new taxa showed evident regularities, validating the rationality of our classification method. Our method can divide microviruses into about 45 additional detailed clusters, which may serve as a new standard for classifying Microviridae members. Furthermore, by addressing the scarcity of host information for microviruses, the current study significantly broadened their host range and discovered over 20 possible new hosts, including important pathogenic bacteria such as Helicobacter pylori and Vibrio cholerae, as well as different taxa demonstrated different host specificities. The findings of this study effectively expand the diversity of the Microviridae family, providing new insights for their classification and identification. Additionally, it offers a novel perspective for monitoring and controlling pathogenic microorganisms in poultry slaughterhouse environments
Understanding Slurry Interaction and Optimizing Multiple Step Cu-CMP Process for 65nm Technology
Abstract not Available.</jats:p
Optimization of Deposition Thickness and Over Polishing Time to Minimize Wafer Level Topography in Copper CMP
AbstractTopography after Cu CMP is one of the main issues in constructing reliable Cu interconnects. The wafer level topography is greatly influenced by many polishing properties such as removal non-uniformity and planarization efficiency, and also by many polishing variables. Among the variables, Cu deposition thickness and over polishing time are easily controllable, and closely related to the topography. For a given polishing condition, the topography can be minimized through the optimization of Cu deposition thickness and over polishing time. A model is proposed to account for the correlation between these variables and the wafer level topography. Numerical result of this model shows a strong dependency of optimized Cu deposition thickness and over polishing time on the removal non-uniformity, dishing susceptibility and over plated bump size.</jats:p
Enhancing the annual yield via nitrogen fertilizer application optimization in the direct seeding ratoon rice system
Direct seeding ratoon rice (DSRR) system is a planting method that can significantly increase grain yield, improving light and temperature utilization efficiency and reducing labor input. However, the current nitrogen fertilizer management method which does not aim at the seedling emergence and development characteristics of DSRR just is only based on the traditional method of transplanting ratoon rice, and which is not conducive to the population development and yield improvement. To determine the suitable nitrogen fertilizer application optimization, we set four nitrogen fertilizer application treatments (N0, no nitrogen fertilizer; N1, traditional nitrogen fertilizer; N2, transferring 20% of total nitrogen from basal fertilizer to tillering stage; N3, reducing total nitrogen by 10% from N2 tillering fertilizer) on a hybrid rice “Fengliangyouxiang1 (FLYX1)” and an inbred rice “Huanghuazhan (HHZ)” under DSRR. The effects of treatments on dry matter accumulation, root growth and vigor, leaf area index, leaf senescence rate and yield were investigated. Our results demonstrated that the yield of main crop in N2 treatment was the highest, which was 63.3%, 6.6% and 8.8% higher than that of N0, N1 and N3 treatment, respectively, mainly due to the difference of effective panicle and spikelets number per m2. The average of two years and varieties, the annual yield of N2 was significant higher than that of N1 and N3 by 4.94% and 8.55%, respectively. However, there was no significant difference between the annual yields of N1 and N3. N2 treatment had significant effects on the accumulation of aboveground dry matter mass which was no significant difference in 20 days after sowing(DAS), but significant difference in 50 DAS. Meanwhile, the root activity and the leaf senescence rate of N2 treatment was significant lower than that of other treatments. In summary, “20% of total nitrogen was transferred from basal fertilizer to tillering stage” can improve the annual yield and main crop development of DSRR system. Further reducing the use of nitrogen fertilizer may significantly improve the production efficiency of nitrogen fertilizer and improve the planting income in DSRR system
Down but Not Out: The Role of MicroRNAs in Hibernating Bats
MicroRNAs (miRNAs) regulate many physiological processes through post-transcriptional control of gene expression and are a major part of the small noncoding RNAs (snRNA). As hibernators can survive at low body temperatures (Tb) for many months without suffering tissue damage, understanding the mechanisms that enable them to do so are of medical interest. Because the brain integrates peripheral physiology and white adipose tissue (WAT) is the primary energy source during hibernation, we hypothesized that both of these organs play a crucial role in hibernation, and thus, their activity would be relatively increased during hibernation. We carried out the first genomic analysis of small RNAs, specifically miRNAs, in the brain and WAT of a hibernating bat ('Myotis ricketti') by comparing deeply torpid with euthermic individual bats using high-throughput sequencing (Solexa) and qPCR validation of expression levels. A total of 196 miRNAs (including 77 novel bat-specific miRNAs) were identified, and of these, 49 miRNAs showed significant differences in expression during hibernation, including 33 in the brain and 25 in WAT (P≤0.01 &│logFC│≥1). Stem-loop qPCR confirmed the miRNA expression patterns identified by Solexa sequencing. Moreover, 31 miRNAs showed tissue- or state-specific expression, and six miRNAs with counts >100 were specifically expressed in the brain. Putative target gene prediction combined with KEGG pathway and GO annotation showed that many essential processes of both organs are significantly correlated with differentially expressed miRNAs during bat hibernation. This is especially evident with down-regulated miRNAs, indicating that many physiological pathways are altered during hibernation. Thus, our novel findings of miRNAs and Interspersed Elements in a hibernating bat suggest that brain and WAT are active with respect to the miRNA expression activity during hibernation
Structural and functional studies of leptins from hibernating and non-hibernating bats
Comparison of ten miRNA expression pattern in four libraries, as detected by Solexa sequencing and qPCR.
<p>PCR was performed in three biological replicates of each state with triplicate wells for each individual sample.</p><p>↑, up-regulated</p><p>↓, down-regulated</p><p>*, <i>P</i>-value<sup>a</sup><0.01 or <i>P</i>-value<sup>b</sup><0.05.</p><p>Comparison of ten miRNA expression pattern in four libraries, as detected by Solexa sequencing and qPCR.</p
