577 research outputs found
Far-Ultraviolet Radiation from Elliptical Galaxies
Far-ultraviolet radiation is a ubiquitous, if unanticipated, phenomenon in
elliptical galaxies and early-type spiral bulges. It is the most variable
photometric feature associated with old stellar populations. Recent
observational and theoretical evidence shows that it is produced mainly by
low-mass, small-envelope, helium-burning stars in extreme horizontal branch and
subsequent phases of evolution. These are probably descendents of the dominant,
metal rich population of the galaxies. Their lifetime UV outputs are remarkably
sensitive to their physical properties and hence to the age and the helium and
metal abundances of their parents. UV spectra are therefore exceptionally
promising diagnostics of old stellar populations, although their calibration
requires a much improved understanding of giant branch mass loss, helium
enrichment, and atmospheric diffusion.Comment: 46 pages; includes LaTeX text file, 9 PS figures, 1 JPG figure, 2
style files. Full resolution figures and PS version available at
http://www.astro.virginia.edu/~rwo/araa99/. Article to appear in Annual
Reviews of Astronomy & Astrophysics, 199
Quasi-Normal Modes of Stars and Black Holes
Perturbations of stars and black holes have been one of the main topics of
relativistic astrophysics for the last few decades. They are of particular
importance today, because of their relevance to gravitational wave astronomy.
In this review we present the theory of quasi-normal modes of compact objects
from both the mathematical and astrophysical points of view. The discussion
includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om,
Kerr and Kerr-Newman) and relativistic stars (non-rotating and
slowly-rotating). The properties of the various families of quasi-normal modes
are described, and numerical techniques for calculating quasi-normal modes
reviewed. The successes, as well as the limits, of perturbation theory are
presented, and its role in the emerging era of numerical relativity and
supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in
Relativity
What are the living conditions and health status of those who don't report their migration status? a population-based study in Chile
BACKGROUND: Undocumented immigrants are likely to be missing from population databases, making it impossible to identify an accurate sampling frame in migration research. No population-based data has been collected in Chile regarding the living conditions and health status of undocumented immigrants. However, the CASEN survey (Caracterizacion Socio- Economica Nacional) asked about migration status in Chile for the first time in 2006 and provides an opportunity to set the base for future analysis of available migration data. We explored the living conditions and health of self-reported immigrants and respondents who preferred not to report their migration status in this survey. METHODS: Cross-sectional secondary analysis of CASEN survey in Chile in 2006. Outcomes: any disability, illness/accident, hospitalization/surgery, cancer/chronic condition (all binary variables); and the number of medical/emergency attentions received (count variables). Covariates: Demographics (age, sex, marital status, urban/rural, ethnicity), socioeconomic status (education level, employment status and household income), and material standard of living (overcrowding, sanitation, housing quality). Weighted regression models were estimated for each health outcome, crude and adjusted by sets of covariates, in STATA 10.0. RESULTS: About 1% of the total sample reported being immigrants and 0.7% preferred not to report their migration status (Migration Status - Missing Values; MS-MV). The MS-MV lived in more deprived conditions and reported a higher rate of health problems than immigrants. Some gender differences were observed by health status among immigrants and the MS-MV but they were not statistically significant. Regressions indicated that age, sex, SES and material factors consistently affected MS-MVs’ chance of presenting poor health and these patterns were different to those found among immigrants. Great heterogeneity in both the MS-MV and the immigrants, as indicated by wide confidence intervals, prevented the identification of other significantly associated covariates. CONCLUSION: This is the first study to look at the living conditions and health of those that preferred not to respond their migration status in Chile. Respondents that do not report their migration status are vulnerable to poor health and may represent undocumented immigrants. Surveys that fail to identify these people are likely to misrepresent the experiences of immigrants and further quantitative and qualitative research is urgently required
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Installing hydrolytic activity into a completely <i>de novo </i>protein framework
The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine–histidine–glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
- …
