2,401 research outputs found

    Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system

    Get PDF
    It has long been recognized that the T-cell compartment has more CD4 helper than CD8 cytotoxic T cells, and this is most evident looking at T-cell development in the thymus. However, it remains unknown how thymocyte development so favors CD4 lineage development. To identify the basis of this asymmetry, we analyzed development of synchronized cohorts of thymocytes in vivo and estimated rates of thymocyte death and differentiation throughout development, inferring lineage-specific efficiencies of selection. Our analysis suggested that roughly equal numbers of cells of each lineage enter selection and found that, overall, a remarkable ∼75% of cells that start selection fail to complete the process. Importantly it revealed that class I-restricted thymocytes are specifically susceptible to apoptosis at the earliest stage of selection. The importance of differential apoptosis was confirmed by placing thymocytes under apoptotic stress, resulting in preferential death of class I-restricted thymocytes. Thus, asymmetric death during selection is the key determinant of the CD4:CD8 ratio in which T cells are generated by thymopoiesis

    Bogoliubov excitation spectrum of an elongated condensate from quasi-one-dimensional to three-dimensional transition

    Full text link
    The quasiparticle excitation spectra of a Bose gas trapped in a highly anisotropic trap is studied with respect to varying total number of particles by numerically solving the effective one-dimensional (1D) Gross-Pitaevskii (GP) equation proposed recently by Mateo \textit{et al.}. We obtain the static properties and Bogoliubov spectra of the system in the high energy domain. This method is computationally efficient and highly accurate for a condensate system undergoing a 1D to three-dimensional (3D) cigar-shaped transition, as is shown through a comparison our results with both those calculated by the 3D-GP equation and analytical results obtained in limiting cases. We identify the applicable parameter space for the effective 1D-GP equation and find that this equation fails to describe a system with large number of atoms. We also identify that the description of the transition from 1D Bose-Einstein condensate (BEC) to 3D cigar-shaped BEC using this equation is not smooth, which highlights the fact that for a finite value of a/asa_\perp/a_s the junction between the 1D and 3D crossover is not perfect.Comment: 17 pages, 6 figure

    Models of self-peptide sampling by developing T cells identify candidate mechanisms of thymic selection

    Get PDF
    Conventional and regulatory T cells develop in the thymus where they are exposed to samples of self-peptide MHC (pMHC) ligands. This probabilistic process selects for cells within a range of responsiveness that allows the detection of foreign antigen without excessive responses to self. Regulatory T cells are thought to lie at the higher end of the spectrum of acceptable self-reactivity and play a crucial role in the control of autoimmunity and tolerance to innocuous antigens. While many studies have elucidated key elements influencing lineage commitment, we still lack a full understanding of how thymocytes integrate signals obtained by sampling self-peptides to make fate decisions. To address this problem, we apply stochastic models of signal integration by T cells to data from a study quantifying the development of the two lineages using controllable levels of agonist peptide in the thymus. We find two models are able to explain the observations; one in which T cells continually re-assess fate decisions on the basis of multiple summed proximal signals from TCR-pMHC interactions; and another in which TCR sensitivity is modulated over time, such that contact with the same pMHC ligand may lead to divergent outcomes at different stages of development. Neither model requires that T and T are differentially susceptible to deletion or that the two lineages need qualitatively different signals for development, as have been proposed. We find additional support for the variable-sensitivity model, which is able to explain apparently paradoxical observations regarding the effect of partial and strong agonists on T and T development

    Computably enumerable Turing degrees and the meet property

    Get PDF
    Working in the Turing degree structure, we show that those degrees which contain computably enumerable sets all satisfy the meet property, i.e. if a is c.e. and b < a, then there exists non-zero m < a with b ^m = 0. In fact, more than this is true: m may always be chosen to be a minimal degree. This settles a conjecture of Cooper and Epstein from the 80s

    Tracking and stress-testing U.S. household leverage

    Full text link
    Borrowers' housing equity is an important component of their wealth and a critical determinant of their vulnerability to shocks. In this paper, we create a unique data set that allows us to provide a comprehensive look at the ratio of housing debt to housing values - what we refer to as household leverage - at the micro level. An advantage of our data is that we are able to study the evolution of household leverage over time and across locations in the United States. We find that leverage was at a very low point just prior to the large declines in house prices that began in 2006, but it rose very quickly thereafter, despite reductions in housing debt. As of late 2015, leverage statistics are approaching their pre-crisis levels, as house prices have risen over 30 percent nationally since 2012. We use our borrower-level leverage measures and another unique feature of our data - updated borrower credit scores - to conduct "stress tests": projecting leverage and defaults under various adverse house price scenarios. We find that while the riskiness of the household sector has declined significantly since 2012, it remains vulnerable to very severe declines in house prices

    Transcranial direct current stimulation of the motor cortex in the treatment of chronic non-specific low back pain. A randomised, double-blind exploratory study

    Get PDF
    This exploratory study aimed to test the proof of principle that active anodal transcranial direct current stimulation (tDCS) applied to the motor cortex reduces pain significantly more than sham stimulation in a group of participants with chronic non-specific low back pain

    The Absolute Magnitude of RRc Variables From Statistical Parallax

    Full text link
    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%Comment: Submitted to ApJ. 11 pages including 6 figure
    corecore