2,550 research outputs found
ECB: Independence at risk?
The extraordinary measures taken by the ECB to combat the financial crisis have led many observers to question whether the bank has put its independence at risk. The bank's vow to do 'whatever it takes' to save the euro has added a second (and potentially contradictory) goal alongside its primary mission of achieving price stability. This expansion of the ECB mandate could expose the bank to national and European political demands, thereby endangering its prized independence
Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation
Over the past two decades, nanoindentation has been the most versatile method for mechanical testing at small length scales. Because of large strain gradients, it does not allow for a straightforward identification of material parameters such as yield and tensile strength, though. This represents a major drawback and has led to the development of alternative microscale testing techniques with microcompression as one of the most popular ones today. In this research, the influence of the realistic sample configuration and unavoidable variations in the experimental conditions is studied systematically by combing in-situ microcompression experiments on ultrafine-grained nickel and finite element simulations. It will be demonstrated that neither qualitative let alone quantitative analyses are as straightforward as they may appear, which diminishes the apparent advantages of microcompression testin
Plasma from Volunteers Breathing Helium Reduces Hypoxia-Induced Cell Damage in Human Endothelial Cells-Mechanisms of Remote Protection Against Hypoxia by Helium.
PurposeRemote ischemic preconditioning protects peripheral organs against prolonged ischemia/reperfusion injury via circulating protective factors. Preconditioning with helium protected healthy volunteers against postischemic endothelial dysfunction. We investigated whether plasma from helium-treated volunteers can protect human umbilical vein endothelial cells (HUVECs) against hypoxia in vitro through release of circulating of factors.MethodsHealthy male volunteers inhaled heliox (79% helium, 21% oxygen) or air for 30 min. Plasma was collected at baseline, directly after inhalation, 6 h and 24 h after start of the experiment. HUVECs were incubated with either 5% or 10% of the plasma for 1 or 2 h and subjected to enzymatically induced hypoxia. Cell damage was measured by LDH content. Furthermore, caveolin 1 (Cav-1), hypoxia-inducible factor (HIF1α), extracellular signal-regulated kinase (ERK)1/2, signal transducer and activator of transcription (STAT3) and endothelial nitric oxide synthase (eNOS) were determined.ResultsPrehypoxic exposure to 10% plasma obtained 6 h after helium inhalation decreased hypoxia-induced cell damage in HUVEC. Cav-1 knockdown in HUVEC abolished this effect.ConclusionsPlasma of healthy volunteers breathing helium protects HUVEC against hypoxic cell damage, possibly involving circulating Cav-1
Tissue engineering on matrix: future of autologous tissue replacement
Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used. In a second step, these scaffolds are seeded with autologous cells attaching to the scaffold microstructure. In order to promote neo-tissue formation and maturation, the seeded scaffolds are exposed to different forms of stimulation. In cardiovascular tissue engineering, this "conditioning” can be achieved via culture media and biomimetic in vitro exposure, e.g., using flow bioreactors. This aims at adequate cellular differentiation, proliferation, and extracellular matrix production to form a living tissue called the construct. These living autologous constructs, such as heart valves or vascular grafts, are created in vitro, comprising a viable interstitium with repair and remodeling capabilities already prior to implantation. In situ further in vivo remodeling is intended to recapitulate physiological vascular architecture and function. The remodeling mechanisms were shown to be dominated by monocytic infiltration and chemotactic host-cell attraction leading into a multifaceted inflammatory process and neo-tissue formation. Key molecules of these processes can be integrated into the scaffold matrix to direct cell and tissue fate in viv
Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri
Complete dataset expanded from Additional file 3. (XLS 16282 kb
Effect of helium pre- or postconditioning on signal transduction kinases in patients undergoing coronary artery bypass graft surgery
Background: The noble gas helium induces pre- and postconditioning in animals and humans. Volatile anesthetics induce cardioprotection in humans undergoing coronary artery bypass graft (CABG) surgery. We hypothesized that helium induces pre-and postconditioning in CABG-patients, affecting signaling molecules protein kinase C-epsilon (PKC-epsilon), p38 mitogen activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK-1/2) and heat shock protein 27 (HSP-27) within cardiac tissue, and reducing postoperative troponin levels.
Methods: After ethical approval and informed consent, 125 elective patients undergoing CABG surgery were randomised into this prospective, placebo controlled, investigator blinded, parallel arm single-centre study. Helium preconditioning (3 x 5 min of 70 % helium and 30 % oxygen) was applied before aortic cross clamping; postconditioning (15 min of helium) was applied before release of the aortic cross clamp. Signaling molecules were measured in right atrial appendix specimens. Troponin-T was measured at 4, 12, 24 and 48 h postoperatively.
Results: Baseline characteristics of all groups were similar. Helium preconditioning did not significantly alter the primary outcome (molecular levels of kinases PKC-e and HSP-27, ratio of activated p38 MAPK or ERK 1/2). Postoperative troponin T was 11 arbitrary units [5, 31; area-under-the-curve (interquartile range)] for controls, and no statistically significant changes were observed after helium preconditioning [He-pre: 11 (6, 18)], helium postconditioning [He-post: 11 (8, 15)], helium pre-and postconditioning [He-PP: 14 (6, 20)] and after sevoflurane preconditioning [APC: 12 (8, 24), p = 0.13]. No adverse effects related to study treatment were observed in this study.
Conclusions: No effect was observed of helium preconditioning, postconditioning or the combination thereof on activation of p38 MAPK, ERK 1/2 or levels of HSP27 and PKC-e in the human heart. Helium pre-and postconditioning did not affect postoperative troponin release in patients undergoing CABG surgery
Impressive left ventricular pseudoaneurysm mimicking a pericardial tamponade 5 years after mitral valve replacement for endocarditis
Tissue-engineered vascular graft remodeling in a growing lamb model: expression of matrix metalloproteinases
OBJECTIVES We have previously demonstrated the functionality and growth of autologous, living, tissue-engineered vascular grafts (TEVGs) in long-term animal studies. These grafts showed substantial in vivo tissue remodeling and approximation to native arterial wall characteristics. Based on this, in vitro and in vivo matrix metalloproteinase (MMP) activity of TEVGs is investigated as a key marker of matrix remodeling. METHODS TEVGs fabricated from biodegradable scaffolds (polyglycolic-acid/poly-4-hydroxybutyrate, PGA/P4HB) seeded with autologous vascular cells were cultured in static and dynamic in vitro conditions. Thereafter, TEVGs were implanted as pulmonary artery replacements in lambs and followed up for 2 years. Gelatin gel zymography to detect MMP-2 and -9 was performed and collagen content quantified (n=5). Latent (pro) and active MMP-2 and -9 were detected. RESULTS Comparable levels of active MMP-9 and pro-MMP-2 were detected in static and dynamic culture. Higher levels of active MMP-2 were detected in dynamic cultures. Expression of MMP-2 and -9 was minimal in native grafts but was increased in implanted TEVG. Pro-MMP-9 was expressed 20 weeks post implantation and persisted up to 80 weeks post implantation. Collagen content in vitro was increased in dynamically conditioned TEVG as compared with static constructs and was increased in vivo compared with the corresponding native pulmonary artery. CONCLUSIONS MMPs are up-regulated in vitro by dynamic culture conditions and could contribute to increased matrix remodeling, native analogous tissue formation and functional growth of TEVGs in vivo. Monitoring of MMP activity, for example, by molecular imaging techniques, may enable the non-invasive assessment of functional tissue quality in future clinical tissue-engineering application
EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy
The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R=−0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N=40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P<0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardiu
- …
