896 research outputs found
Dynamics of Transformation from Segregation to Mixed Wealth Cities
We model the dynamics of the Schelling model for agents described simply by a
continuously distributed variable - wealth. Agents move to neighborhoods where
their wealth is not lesser than that of some proportion of their neighbors, the
threshold level. As in the case of the classic Schelling model where
segregation obtains between two races, we find here that wealth-based
segregation occurs and persists. However, introducing uncertainty into the
decision to move - that is, with some probability, if agents are allowed to
move even though the threshold level condition is contravened - we find that
even for small proportions of such disallowed moves, the dynamics no longer
yield segregation but instead sharply transition into a persistent mixed wealth
distribution. We investigate the nature of this sharp transformation between
segregated and mixed states, and find that it is because of a non-linear
relationship between allowed moves and disallowed moves. For small increases in
disallowed moves, there is a rapid corresponding increase in allowed moves, but
this tapers off as the fraction of disallowed moves increase further and
finally settles at a stable value, remaining invariant to any further increase
in disallowed moves. It is the overall effect of the dynamics in the initial
region (with small numbers of disallowed moves) that shifts the system away
from a state of segregation rapidly to a mixed wealth state.
The contravention of the tolerance condition could be interpreted as public
policy interventions like minimal levels of social housing or housing benefit
transfers to poorer households. Our finding therefore suggests that it might
require only very limited levels of such public intervention - just sufficient
to enable a small fraction of disallowed moves, because the dynamics generated
by such moves could spur the transformation from a segregated to mixed
equilibrium.Comment: 12 pages, 7 figure
Probabilistic reasoning with a bayesian DNA device based on strand displacement
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro
Survey on Vision-based Path Prediction
Path prediction is a fundamental task for estimating how pedestrians or
vehicles are going to move in a scene. Because path prediction as a task of
computer vision uses video as input, various information used for prediction,
such as the environment surrounding the target and the internal state of the
target, need to be estimated from the video in addition to predicting paths.
Many prediction approaches that include understanding the environment and the
internal state have been proposed. In this survey, we systematically summarize
methods of path prediction that take video as input and and extract features
from the video. Moreover, we introduce datasets used to evaluate path
prediction methods quantitatively.Comment: DAPI 201
Probing nuclear expansion dynamics with -spectra
We study the dynamics of charged pions in the nuclear medium via the ratio of
differential - and -spectra in a coupled-channel BUU (CBUU)
approach. The relative energy shift of the charged pions is found to correlate
with the pion freeze-out time in nucleus-nucleus collisions as well as with the
impact parameter of the heavy-ion reaction. Furthermore, the long-range Coulomb
force provides a 'clock' for the expansion of the hot nuclear system. Detailed
comparisons with experimental data for at 1 GeV/A and at
2.0 GeV/A are presented.Comment: 21 pages, latex, figures include
Massively parallel computing on an organic molecular layer
Current computers operate at enormous speeds of ~10^13 bits/s, but their
principle of sequential logic operation has remained unchanged since the 1950s.
Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is
capable of remarkable decision-making based on the collective operations of
millions of neurons at a time in ever-evolving neural circuitry. Here we use
molecular switches to build an assembly where each molecule communicates-like
neurons-with many neighbors simultaneously. The assembly's ability to
reconfigure itself spontaneously for a new problem allows us to realize
conventional computing constructs like logic gates and Voronoi decompositions,
as well as to reproduce two natural phenomena: heat diffusion and the mutation
of normal cells to cancer cells. This is a shift from the current static
computing paradigm of serial bit-processing to a regime in which a large number
of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure
A Fast Algorithm Finding the Shortest Reset Words
In this paper we present a new fast algorithm finding minimal reset words for
finite synchronizing automata. The problem is know to be computationally hard,
and our algorithm is exponential. Yet, it is faster than the algorithms used so
far and it works well in practice. The main idea is to use a bidirectional BFS
and radix (Patricia) tries to store and compare resulted subsets. We give both
theoretical and practical arguments showing that the branching factor is
reduced efficiently. As a practical test we perform an experimental study of
the length of the shortest reset word for random automata with states and 2
input letters. We follow Skvorsov and Tipikin, who have performed such a study
using a SAT solver and considering automata up to states. With our
algorithm we are able to consider much larger sample of automata with up to
states. In particular, we obtain a new more precise estimation of the
expected length of the shortest reset word .Comment: COCOON 2013. The final publication is available at
http://link.springer.com/chapter/10.1007%2F978-3-642-38768-5_1
Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies
Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and
mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV
have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg.
Calorimetric analysis of the charged particles observed in coincidence with the
PLF reveals that the excitation of the primary PLF is strongly related to its
velocity damping. Furthermore, for a given V_PLF*, its excitation is not
related to its size, Z_PLF*. For the largest velocity damping, the excitation
energy attained is large, approximately commensurate with a system at the
limiting temperatureComment: 5 pages, 6 figure
Merchantville, New Jersey: The Development, Architecture, and Preservation of a Victorian Commuter Suburb
Crossing the Dripline to 11N Using Elastic Resonance Scattering
The level structure of the unbound nucleus 11N has been studied by 10C+p
elastic resonance scattering in inverse geometry with the LISE3 spectrometer at
GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement
was done at the A1200 spectrometer at MSU. The excitation function above the
10C+p threshold has been determined up to 5 MeV. A potential-model analysis
revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44
+-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV,
(Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and
5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion
completely analogous to its mirror partner, 11Be. A narrow resonance in the
excitation function at 4.33 (+-0.05) MeV was also observed and assigned
spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR
- …
