9,129 research outputs found
Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves
In this paper we show that the hydrodynamic problem for three-dimensional
water waves with strong surface-tension effects admits a fully localised
solitary wave which decays to the undisturbed state of the water in every
horizontal direction. The proof is based upon the classical variational
principle that a solitary wave of this type is a critical point of the energy
subject to the constraint that the momentum is fixed. We prove the existence of
a minimiser of the energy subject to the constraint that the momentum is fixed
and small. The existence of a small-amplitude solitary wave is thus assured,
and since the energy and momentum are both conserved quantities a standard
argument may be used to establish the stability of the set of minimisers as a
whole. `Stability' is however understood in a qualified sense due to the lack
of a global well-posedness theory for three-dimensional water waves.Comment: 83 pages, 1 figur
Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.
Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans
Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces
The forces between colloidal particles at a decane-water interface, in the
presence of low concentrations of a monovalent salt (NaCl) and of the
surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been
studied using laser tweezers. In the absence of electrolyte and surfactant,
particle interactions exhibit a long-range repulsion, yet the variation of the
interaction for different particle pairs is found to be considerable. Averaging
over several particle pairs was hence found to be necessary to obtain reliable
assessment of the effects of salt and surfactant. It has previously been
suggested that the repulsion is consistent with electrostatic interactions
between a small number of dissociated charges in the oil phase, leading to a
decay with distance to the power -4 and an absence of any effect of electrolyte
concentration. However, the present work demonstrates that increasing the
electrolyte concentration does yield, on average, a reduction of the magnitude
of the interaction force with electrolyte concentration. This implies that
charges on the water side also contribute significantly to the electrostatic
interactions. An increase in the concentration of SDS leads to a similar
decrease of the interaction force. Moreover the repulsion at fixed SDS
concentrations decreases over longer times. Finally, measurements of three-body
interactions provide insight into the anisotropic nature of the interactions.
The unique time-dependent and anisotropic interactions between particles at the
oil-water interface allow tailoring of the aggregation kinetics and structure
of the suspension structure.Comment: Submitted to Langmui
Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps
Peer reviewedPublisher PD
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV
We report on the first measurement of double-spin asymmetry, A_LL, of
electrons from the decays of hadrons containing heavy flavor in longitudinally
polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The
asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at
the Relativistic Heavy Ion Collider. The measured asymmetries are consistent
with zero within the statistical errors. We obtained a constraint for the
polarized gluon distribution in the proton of |Delta g/g(log{_10}x=
-1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order
perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev.
D. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
