3,273 research outputs found

    Generating Labels for Regression of Subjective Constructs using Triplet Embeddings

    Full text link
    Human annotations serve an important role in computational models where the target constructs under study are hidden, such as dimensions of affect. This is especially relevant in machine learning, where subjective labels derived from related observable signals (e.g., audio, video, text) are needed to support model training and testing. Current research trends focus on correcting artifacts and biases introduced by annotators during the annotation process while fusing them into a single annotation. In this work, we propose a novel annotation approach using triplet embeddings. By lifting the absolute annotation process to relative annotations where the annotator compares individual target constructs in triplets, we leverage the accuracy of comparisons over absolute ratings by human annotators. We then build a 1-dimensional embedding in Euclidean space that is indexed in time and serves as a label for regression. In this setting, the annotation fusion occurs naturally as a union of sets of sampled triplet comparisons among different annotators. We show that by using our proposed sampling method to find an embedding, we are able to accurately represent synthetic hidden constructs in time under noisy sampling conditions. We further validate this approach using human annotations collected from Mechanical Turk and show that we can recover the underlying structure of the hidden construct up to bias and scaling factors.Comment: 9 pages, 5 figures, accepted journal pape

    Rovibrational Resonance Effects In Collision-Induced Electronic Energy Transfer: I2(E,v=0-2)+CF4

    Get PDF
    Collisions of I-2 in the E(0(g)(+)) electronic state with CF4 molecules induce electronic energy transfer to the nearby D, beta, and D-\u27 ion-pair states. Simulations of dispersed fluorescence spectra reveal collision-induced electronic energy transfer rate constants and final vibrational state distributions within each final electronic state. In comparison with earlier reports on I-2(upsilon(E)=0-2) collisions with He or Ar atoms, we find markedly different dynamics when I-2, excited to the same rovibronic states, collides with CF4. Final vibrational state distributions agree with the associated Franck-Condon factors with the initially prepared state to a greater degree than those found with He or Ar collision partners and suggest that internal degrees of freedom in the CF4 molecule represent a substantial means for accepting the accompanying loss of I-2 vibronic energy. Comparison of the E -\u3e D transfer of I-2 excited to the J=23 and J=55 levels of the upsilon(E)=0 state reveals the onset of specific, nonstatistical dynamics as the available energy is increased above the threshold for excitation of the low frequency nu(2) bending mode of CF4. (c) 2006 American Institute of Physics

    Laser writing of individual atomic defects in a crystal with near-unity yield

    Full text link
    Atomic defects in wide band gap materials show great promise for development of a new generation of quantum information technologies, but have been hampered by the inability to produce and engineer the defects in a controlled way. The nitrogen-vacancy (NV) color center in diamond is one of the foremost candidates, with single defects allowing optical addressing of electron spin and nuclear spin degrees of freedom with potential for applications in advanced sensing and computing. Here we demonstrate a method for the deterministic writing of individual NV centers at selected locations with high positioning accuracy using laser processing with online fluorescence feedback. This method provides a new tool for the fabrication of engineered materials and devices for quantum technologies and offers insight into the diffusion dynamics of point defects in solids.Comment: 16 pages, 8 figure

    Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California

    Get PDF
    In mountainous settings, increases in rock uplift are often followed by a commensurate uptick in denudation as rivers incise and steepen hillslopes, making them increasingly prone to landsliding as slope angles approach a limiting value. For decades, the threshold slope model has been invoked to account for landslide-driven increases in sediment flux that limit topographic relief, but the manner by which slope failures organize themselves spatially and temporally in order for erosion to keep pace with rock uplift has not been well documented. Here, we review past work and present new findings from remote sensing, cosmogenic radionuclides, suspended sediment records, and airborne lidar data, to decipher patterns of landslide activity and geomorphic processes related to rapid uplift along the northward-migrating Mendocino Triple Junction in Northern California. From historical air photos and airborne lidar, we estimated the velocity and sediment flux associated with active, slow-moving landslides (or earthflows) in the mélange- and argillite-dominated Eel River watershed using the downslope displacement of surface markers such as trees and shrubs. Although active landslides that directly convey sediment into the channel network account for only 7% of the landscape surface, their sediment flux amounts to more than 50% of the suspended load recorded at downstream sediment gaging stations. These active slides tend to exhibit seasonal variations in velocity as satellite-based interferometry has demonstrated that rapid acceleration commences within 1 to 2 months of the onset of autumn rainfall events before slower deceleration ensues in the spring and summer months. Curiously, this seasonal velocity pattern does not appear to vary with landslide size, suggesting that complex hydrologic–mechanical feedbacks (rather than 1-D pore pressure diffusion) may govern slide dynamics. A new analysis of 14 yrs of discharge and sediment concentration data for the Eel River indicates that the characteristic mid-winter timing of earthflow acceleration corresponds with increased suspended concentration values, suggesting that the seasonal onset of landslide motion each year may be reflected in the export of sediments to the continental margin. The vast majority of active slides exhibit gullied surfaces and the gully networks, which are also seasonally active, may facilitate sediment export although the proportion of material produced by this pathway is poorly known. Along Kekawaka Creek, a prominent tributary to the Eel River, new analyses of catchment-averaged erosion rates derived from cosmogenic radionuclides reveal rapid erosion (0.76 mm/yr) below a prominent knickpoint and slower erosion (0.29 mm/yr) upstream. Such knickpoints are frequently observed in Eel tributaries and are usually comprised of massive (> 10 m) interlocking resistant boulders that likely persist in the landscape for long periods of time (> 105 yr). Upstream of these knickpoints, active landslides tend to be less frequent and average slope angles are slightly gentler than in downstream areas, which indicates that landslide density and average slope angle appear to increase with erosion rate. Lastly, we synthesize evidence for the role of large, catastrophic landslides in regulating sediment flux and landscape form. The emergence of resistant blocks within the mélange bedrock has promoted large catastrophic slides that have dammed the Eel River and perhaps generated outburst events in the past. The frequency and impact of these landslide dams likely depend on the spatial and size distributions of resistant blocks relative to the width and drainage area of adjacent valley networks. Overall, our findings demonstrate that landslides within the Eel River catchment do not occur randomly, but instead exhibit spatial and temporal patterns related to baselevel lowering, climate forcing, and lithologic variations. Combined with recent landscape evolution models that incorporate landslides, these results provide predictive capability for estimating erosion rates and managing hazards in mountainous regions

    Bayesian angular power spectrum analysis of interferometric data

    Full text link
    We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies inthe cosmic microwave background, 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as O(n_p log n_p) where n_p measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.Comment: 7 pages, 10 figures, expanded discussion and edited to match ApJS approved version, affiliations update

    Genome-Wide Association with Select Biomarker Traits in the Framingham Heart Study

    Get PDF
    BACKGROUND: Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations. METHODS: We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507–1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001. RESULTS: With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at . CONCLUSION: The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC25195); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1); National Institutes of Health (HL064753, HL076784, AG028321, HL71039, 2 K24HL04334, 1K23 HL083102); Doris Duke Charitable Foundation; American Diabetes Association Career Developement Award; National Center for Research Resources (GCRC M01-RR01066); US Department of Agriculture Agricultural Research Service (58-1950-001, 58-1950-401); National Institute of Aging (AG14759
    corecore