591 research outputs found
Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries
Acknowledgements Serpetti N., Heymans J.J., and Burrows M.T. were funded by the Natural Environment Research Council and Department for Environment, Food and Rural Affairs under the Marine Ecosystems Research Programme (MERP) (grant No. NE/L003279/1). Baudron A. and Fernandes, P.G. were founded by Horizon 2020 European research projects MareFrame (grant No. 613571) and ClimeFish (grant No. 677039). Payne, B.L. was founded by the Natural Environment Research Council and Department for Environment under the ‘Velocity of Climate Change’ (grant No. NE/J024082/1).Peer reviewedPublisher PD
Perspectives on the Missiological Legacy of Martin Luther and the Protestant Reformation
Upon the occasion of the 500th anniversary Martin Luther’s publication of his 95 theses, this composite article brings together five perspectives on the missiological legacy of the reformer and the subsequent Protestant Reformation. The blend of voices makes clear that Luther and the subsequent Protestant Reformation do not have a simple missiological legacy but rather various legacies: theological, ecclesiological, political, and practical; some of which co-exist, and even collide, in the same ecclesiastical community. The scandalous legacy of a splintered and splintering church remains. Yet, demonstrations of mutual recognition, reciprocal respect, and genuine fellowship can be found in certain missiological circles
From Molecular Cores to Planet-forming Disks with SIRTF
The SIRTF mission and the Legacy programs will provide coherent data bases
for extra-galactic and Galactic science that will rapidly become available to
researchers through a public archive. The capabilities of SIRTF and the six
legacy programs are described briefly. Then the cores to disks (c2d) program is
described in more detail. The c2d program will use all three SIRTF instruments
(IRAC, MIPS, and IRS) to observe sources from molecular cores to protoplanetary
disks, with a wide range of cloud masses, stellar masses, and star-forming
environments. The SIRTF data will stimulate many follow-up studies, both with
SIRTF and with other instruments.Comment: 6 pages, from Fourth Cologne-Bonn-Zermatt-Symposium, The Dense
Interstellar Matter in Galaxie
Constraints on the Atmospheric Circulation and Variability of the Eccentric Hot Jupiter XO-3b
We report secondary eclipse photometry of the hot Jupiter XO-3b in the
4.5~m band taken with the Infrared Array Camera (IRAC) on the Spitzer
Space Telescope. We measure individual eclipse depths and center of eclipse
times for a total of twelve secondary eclipses. We fit these data
simultaneously with two transits observed in the same band in order to obtain a
global best-fit secondary eclipse depth of and a center of
eclipse phase of . We assess the relative magnitude of
variations in the dayside brightness of the planet by measuring the size of the
residuals during ingress and egress from fitting the combined eclipse light
curve with a uniform disk model and place an upper limit of 0.05. The new
secondary eclipse observations extend the total baseline from one and a half
years to nearly three years, allowing us to place an upper limit on the
periastron precession rate of degrees/day the tightest
constraint to date on the periastron precession rate of a hot Jupiter. We use
the new transit observations to calculate improved estimates for the system
properties, including an updated orbital ephemeris. We also use the large
number of secondary eclipses to obtain the most stringent limits to date on the
orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the
consistency of multiple-epoch Spitzer observations.Comment: 14 pages, 11 figures, published by Ap
3.6 and 4.5 m Phase Curves of the Highly-Irradiated Hot Jupiters WASP-19b and HAT-P-7b
We analyze full-orbit phase curve observations of the transiting hot Jupiters
WASP-19b and HAT-P-7b at 3.6 and 4.5 m obtained using the Spitzer Space
Telescope. For WASP-19b, we measure secondary eclipse depths of and at 3.6 and 4.5 m, which are consistent
with a single blackbody with effective temperature K. The
measured 3.6 and 4.5 m secondary eclipse depths for HAT-P-7b are
and , which are well-described by a
single blackbody with effective temperature K. Comparing the phase
curves to the predictions of one-dimensional and three-dimensional atmospheric
models, we find that WASP-19b's dayside emission is consistent with a model
atmosphere with no dayside thermal inversion and moderately efficient day-night
circulation. We also detect an eastward-shifted hotspot, suggesting the
presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside
emission suggests a dayside thermal inversion and relatively inefficient
day-night circulation; no hotspot shift is detected. For both planets, these
same models do not agree with the measured nightside emission. The
discrepancies in the model-data comparisons for WASP-19b might be explained by
high-altitude silicate clouds on the nightside and/or high atmospheric
metallicity, while the very low 3.6 m nightside planetary brightness for
HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond
albedos of 0 ( at ) and for WASP-19b and
HAT-P-7b, respectively. In the context of other planets with thermal phase
curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of
decreasing day-night heat recirculation with increasing irradiation.Comment: 22 pages, 29 figures, accepted by Ap
Spitzer Secondary Eclipse Observations of Five Cool Gas Giant Planets and Empirical Trends in Cool Planet Emission Spectra
In this work we present Spitzer 3.6 and 4.5 micron secondary eclipse
observations of five new cool (<1200 K) transiting gas giant planets:
HAT-P-19b, WASP-6b, WASP-10b, WASP-39b, and WASP-67b. We compare our measured
eclipse depths to the predictions of a suite of atmosphere models and to
eclipse depths for planets with previously published observations in order to
constrain the temperature- and mass-dependent properties of gas giant planet
atmospheres. We find that the dayside emission spectra of planets less massive
than Jupiter require models with efficient circulation of energy to the night
side and/or increased albedos, while those with masses greater than that of
Jupiter are consistently best-matched by models with inefficient circulation
and low albedos. At these relatively low temperatures we expect the atmospheric
methane to CO ratio to vary as a function of metallicity, and we therefore use
our observations of these planets to constrain their atmospheric metallicities.
We find that the most massive planets have dayside emission spectra that are
best-matched by solar metallicity atmosphere models, but we are not able to
place strong constraints on metallicities of the smaller planets in our sample.
Interestingly, we find that the ratio of the 3.6 and 4.5 micron brightness
temperatures for these cool transiting planets is independent of planet
temperature, and instead exhibits a tentative correlation with planet mass. If
this trend can be confirmed, it would suggest that the shape of these planets'
emission spectra depends primarily on their masses, consistent with the
hypothesis that lower-mass planets are more likely to have metal-rich
atmospheres.Comment: 16 pages, 14 figures, accepted for publication in Ap
Characterization of the Atmosphere of the Hot Jupiter HAT-P-32Ab and the M-dwarf Companion HAT-P-32B
Copyright © 2015 IOP PublishingWe report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/Wide-field Infra-Red Camera (WIRC) in H and KS bands and with Spitzer/IRAC at 3.6 and 4.5 μm. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P-32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.''923 ± 0.''004 and a position angle 110fdg64 ± 0fdg12. We measure the flux ratios of the binary in g'r'i'z' and H and KS bands, and determine T eff= 3565 ± 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090% ± 0.033%, 0.178% ± 0.057%, 0.364% ± 0.016%, and 0.438% ± 0.020% in the H, KS , 3.6 and 4.5 μm bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well described by a blackbody model for the planet with T p = 2042 ± 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 ± 1.3 minutes from the predicted mid-eclipse time, which constrains e = 0.0072 +0.0700}_-0.0064 when combined with radialNASACenter for Exoplanets and Habitable Worlds at the Pennsylvania State UniversityPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNational Science Foundation - Graduate Research Fellowship ProgramNatural Science and Engineering Research Council of CanadaJPL/SpitzerCalifornia Institute of Technology - NASA Sagan FellowshipAlfred P. Sloan FoundationCalifornia Institute of TechnologyInter-University Centre for Astronomy and AstrophysicsNational Science FoundationMt. Cuba Astronomical FoundationSamuel Oschi
Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System
Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet's atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ~350 hr of 4.5 μm observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b's 4.5 μm photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet's orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres
- …
