12,186 research outputs found
Collisional Cascades in Planetesimal Disks II. Embedded Planets
We use a multiannulus planetesimal accretion code to investigate the growth
of icy planets in the outer regions of a planetesimal disk. In a quiescent
minimum mass solar nebula, icy planets grow to sizes of 1000--3000 km on a
timescale t = 15-20 Myr (a/30 AU)^3 where a is the distance from the central
star. Planets form faster in more massive nebulae. Newly-formed planets stir up
leftover planetesimals along their orbits and produce a collisional cascade
where icy planetesimals are slowly ground to dust.
The dusty debris of planet formation has physical characteristics similar to
those observed in beta Pic, HR 4796A, and other debris disks. We derive dust
masses for small particles, 1 mm and smaller, and large particles, 1 mm and
larger, as a function of the initial conditions in the planetesimal disk. The
dust luminosities derived from these masses are similar to those observed in
Vega, HR 4796A, and other debris disks. The calculations produce bright rings
and dark gaps. Bright rings occur where 1000 km and larger planets have
recently formed. Dark gaps are regions where planets have cleared out dust or
shadows where planets have yet to form.Comment: to be published in the Astronomical Journal, January 2004; 7 pages of
text; 17 figures at
http://cfa-www.harvard.edu/~kenyon/pf/emb-planet-figures.pdf; 2 animations at
http://cfa-www.harvard.edu/~kenyon/pf/emb-planet-movies.htm
Comparative Study of Active Flow Control Strategies for Lift Enhancement of a Simplified High-Lift Configuration
Numerical simulations have been performed for a simplified high-lift (SHL) version of the Common Research Model (CRM) configuration, where the Fowler flaps of the conventional high-lift (CRM-HL) configuration are replaced by a set of simple hinged flaps. These hinged flaps are equipped with integrated modular active flow control (AFC) cartridges on the suction surface, and the resulting geometry is known as the CRM-SHL-AFC configuration. The main objective is to make use of AFC devices on the CRM-SHL-AFC configuration to recover the aerodynamic performance (lift) of the CRM-HL configuration. In the current paper, a Lattice Boltzmann method-based computational fluid dynamics (CFD) code, known as PowerFLOWQ is used to simulate the entire flow field associated with the CRM-SHL-AFC configuration equipped with several different types of AFC devices. The transonic version of the PowerFLOWQ code that has been validated for high speed flows is used to accurately simulate the flow field generated by the high-momentum actuators required to mitigate reversed flow regions on the suction surfaces of the main wing and the flap. The numerical solutions predict the expected trends in aerodynamic forces as the actuation levels are increased. More efficient AFC systems and actuator arrangements emerged based on the parametric studies performed prior to a Fall 2018 wind tunnel test. Preliminary comparisons of the numerical solutions for lift and surface pressures are presented here with the experimental data, demonstrating the usefulness of CFD for predicting the flow field and lift characteristics of AFC-enabled high-lift configurations
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1
Using data from the DEEP2 Galaxy Redshift Survey and HST/ACS imaging in the
Extended Groth Strip, we select nearly 100 interacting galaxy systems including
kinematic close pairs and morphologically identified merging galaxies. Spitzer
MIPS 24 micron fluxes of these systems reflect the current dusty star formation
activity, and at a fixed stellar mass (M_{*}) the median infrared luminosity
(L_{IR}) among merging galaxies and close pairs of blue galaxies is twice (1.9
+/- 0.4) that of control pairs drawn from isolated blue galaxies. Enhancement
declines with galaxy separation, being strongest in close pairs and mergers and
weaker in wide pairs compared to the control sample. At z ~ 0.9, 7.1% +/- 4.3%
of massive interacting galaxies (M_{*} > 2*10^{10} M_{solar}) are found to be
ULIRGs, compared to 2.6% +/- 0.7% in the control sample. The large spread of IR
luminosity to stellar mass ratio among interacting galaxies suggests that this
enhancement may depend on the merger stage as well as other as yet unidentified
factors (e.g., galaxy structure, mass ratio, orbital characteristics, presence
of AGN or bar). The contribution of interacting systems to the total IR
luminosity density is moderate (<= 36 %).Comment: 12 pages, 2 figures, 1 table, minor changes to match the proof
version, accepted for publication in the ApJL AEGIS Special Issu
Numerical Simulation of a Simplified High-Lift CRM Configuration Embedded with Fluidic Actuators
Numerical simulations have been performed for a simplified high-lift configuration that is representative of a modern transport airplane. This configuration includes a leading-edge slat, fuselage, wing, nacelle-pylon and a simple hinged flap. The suction surface of the flap is embedded with multiple rows of fluidic actuators to reduce the extent of reversed flow regions and improve the aerodynamic performance of the configuration with flap in a deployed state. In the current paper, a Lattice Boltzmann Method based high-fidelity computational fluid dynamics (CFD) code, known as PowerFLOW is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW code that has been validated for high speed flows is used for the present simulations to accurately represent the transonic flow regimes that are encountered in the flow field generated by the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on the suction surfaces of the main wing and the flap. The numerical solutions predict the expected trends in aerodynamic forces as the actuation levels are increased. More efficient active flow control (AFC) systems and actuator arrangement for lift augmentation are emerging based on the parametric studies conducted here prior to wind tunnel tests. These numerical solutions will be compared with experimental data, once such data becomes available
Constraints on the relationship between stellar mass and halo mass at low and high redshift
We use a statistical approach to determine the relationship between the
stellar masses of galaxies and the masses of the dark matter halos in which
they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and
requiring that the observed stellar mass function be reproduced. We find good
agreement with constraints from galaxy-galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and
subhalos obtained from the simulation, we find that our model predictions for
the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the SDSS
at z=0. We show that the clustering data do not provide additional strong
constraints on the SHM function and conclude that our model can therefore
predict clustering as a function of stellar mass. We compute the conditional
mass function, which yields the average number of galaxies with stellar masses
in the range [m, m+dm] that reside in a halo of mass M. We study the redshift
dependence of the SHM relation and show that, for low mass halos, the SHM ratio
is lower at higher redshift. The derived SHM relation is used to predict the
stellar mass dependent galaxy CF and bias at high redshift. Our model predicts
that not only are massive galaxies more biased than low mass ones at all
redshifts, but the bias increases more rapidly with increasing redshift for
massive galaxies than for low mass ones. We present convenient fitting
functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.Comment: 21 pages, 17 figures, discussion enlarged, one more figure, updated
references, accepted for publication in Ap
Effects of traumatic brain injury on cognitive functioning and cerebral metabolites in HIV-infected individuals.
We explored the possible augmenting effect of traumatic brain injury (TBI) history on HIV (human immunodeficiency virus) associated neurocognitive complications. HIV-infected participants with self-reported history of definite TBI were compared to HIV patients without TBI history. Groups were equated for relevant demographic and HIV-associated characteristics. The TBI group evidenced significantly greater deficits in executive functioning and working memory. N-acetylaspartate, a putative marker of neuronal integrity, was significantly lower in the frontal gray matter and basal ganglia brain regions of the TBI group. Together, these results suggest an additional brain impact of TBI over that from HIV alone. One clinical implication is that HIV patients with TBI history may need to be monitored more closely for increased risk of HIV-associated neurocognitive disorder signs or symptoms
Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor
Adiabatic quantum computing enables the preparation of many-body ground
states. This is key for applications in chemistry, materials science, and
beyond. Realisation poses major experimental challenges: Direct analog
implementation requires complex Hamiltonian engineering, while the digitised
version needs deep quantum gate circuits. To bypass these obstacles, we suggest
an adiabatic variational hybrid algorithm, which employs short quantum circuits
and provides a systematic quantum adiabatic optimisation of the circuit
parameters. The quantum adiabatic theorem promises not only the ground state
but also that the excited eigenstates can be found. We report the first
experimental demonstration that many-body eigenstates can be efficiently
prepared by an adiabatic variational algorithm assisted with a multi-qubit
superconducting coprocessor. We track the real-time evolution of the ground and
exited states of transverse-field Ising spins with a fidelity up that can reach
about 99%.Comment: 12 pages, 4 figure
Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands
A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands
Seeing double with K2: Testing re-inflation with two remarkably similar planets around red giant branch stars
Despite more than 20 years since the discovery of the first gas giant planet
with an anomalously large radius, the mechanism for planet inflation remains
unknown. Here, we report the discovery of EPIC228754001.01, an inflated gas
giant planet found with the NASA K2 Mission, and a revised mass for another
inflated planet, K2-97b. These planets reside on ~9 day orbits around host
stars which recently evolved into red giants. We constrain the irradiation
history of these planets using models constrained by asteroseismology and
Keck/HIRES spectroscopy and radial velocity measurements. We measure planet
radii of 1.31 +\- 0.11 Rjup and and 1.30 +\- 0.07 Rjup, respectively. These
radii are typical for planets receiving the current irradiation, but not the
former, zero age main sequence irradiation of these planets. This suggests that
the current sizes of these planets are directly correlated to their current
irradiation. Our precise constraints of the masses and radii of the stars and
planets in these systems allow us to constrain the planetary heating efficiency
of both systems as 0.03% +0.03%/-0.02%. These results are consistent with a
planet re-inflation scenario, but suggest the efficiency of planet re-inflation
may be lower than previously theorized. Finally, we discuss the agreement
within 10% of stellar masses and radii, and planet masses, radii, and orbital
periods of both systems and speculate that this may be due to selection bias in
searching for planets around evolved stars.Comment: 18 pages, 15 figures, accepted to AJ. Figures 11, 12, and 13 are the
key figures of the pape
- …
