4 research outputs found
Statistical Mechanics of Nonuniform Magnetization Reversal
The magnetization reversal rate via thermal creation of soliton pairs in
quasi-1D ferromagnetic systems is calculated. Such a model describes e.g. the
time dependent coercivity of elongated particles as used in magnetic recording
media. The energy barrier that has to be overcome by thermal fluctuations
corresponds to a soliton-antisoliton pair whose size depends on the external
field. In contrast to other models of first order phase transitions such as the
phi^4 model, an analytical expression for this energy barrier is found for all
values of the external field. The magnetization reversal rate is calculated
using a functional Fokker-Planck description of the stochastic magnetization
dynamics. Analytical results are obtained in the limits of small fields and
fields close to the anisotropy field. In the former case the hard-axis
anisotropy becomes effectively strong and the magnetization reversal rate is
shown to reduce to the nucleation rate of soliton-antisoliton pairs in the
overdamped double sine-Gordon model. The present theory therefore includes the
nucleation rate of soliton-antisoliton pairs in the double sine-Gordon chain as
a special case. These results demonstrate that for elongated particles, the
experimentally observed coercivity is significantly lower than the value
predicted by the standard theories of N\'eel and Brown.Comment: 21 pages RevTex 3.0 (twocolumn), 6 figures available on request, to
appear in Phys Rev B, Dec (1994
Cellular processes of v-Src transformation revealed by gene profiling of primary cells - Implications for human cancer
<p>Abstract</p> <p>Background</p> <p>Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets.</p> <p>Methods</p> <p>CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets.</p> <p>Results</p> <p>The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis.</p> <p>Conclusion</p> <p>By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.</p
