185 research outputs found

    Selective inhibition of yeast regulons by daunorubicin: A transcriptome-wide analysis

    Get PDF
    16 páginas, 6 figuras, 9 tablas.Background The antitumor drug daunorubicin exerts some of its cytotoxic effects by binding to DNA and inhibiting the transcription of different genes. We analysed this effect in vivo at the transcriptome level using the budding yeast Saccharomyces cerevisiae as a model and sublethal (IC40) concentrations of the drug to minimise general toxic effects. Results Daunorubicin affected a minor proportion (14%) of the yeast transcriptome, increasing the expression of 195 genes and reducing expression of 280 genes. Daunorubicin down-regulated genes included essentially all genes involved in the glycolytic pathway, the tricarboxylic acid cycle and alcohol metabolism, whereas transcription of ribosomal protein genes was not affected or even slightly increased. This pattern is consistent with a specific inhibition of glucose usage in treated cells, with only minor effects on proliferation or other basic cell functions. Analysis of promoters of down-regulated genes showed that they belong to a limited number of transcriptional regulatory units (regulons). Consistently, data mining showed that daunorubicin-induced changes in expression patterns were similar to those observed in yeast strains deleted for some transcription factors functionally related to the glycolysis and/or the cAMP regulatory pathway, which appeared to be particularly sensitive to daunorubicin. Conclusion The effects of daunorubicin treatment on the yeast transcriptome are consistent with a model in which this drug impairs binding of different transcription factors by competing for their DNA binding sequences, therefore limiting their effectiveness and affecting the corresponding regulatory networks. This proposed mechanism might have broad therapeutic implications against cancer cells growing under hypoxic conditions.This work has been supported by the Spanish Ministry for Education and Science (MEC, grants BIO2005-00840, BFU2007-60998/BMC and AGL2000-0133-P4-03).Peer reviewe

    Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes

    Get PDF
    How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin

    Screening anti-predator behaviour in fish larvae exposed to environmental pollutants

    Get PDF
    Artículo en revista indizadaPredation is one of the main sources of mortality for fish larvae. During evolution, they have developed different anti-predator behaviours, as the vibrational-evoked startle response and its habituation, for promoting survival to predator's strikes. Whereas these two behaviours can be altered by the exposure to some neurotoxicants, it is currently unknown if the exposure to environmentally relevant concentration (ERC) of neurotoxic pollutants could impair them. In this study thirty neurotoxic environmental pollutants from nine chemical groups, includ- ing: herbicides; carbamate, organophosphate (OP), organochlorine (OC), neonicotinoid and pyrethroid insecti- cides; toxins; metal and non-metal elements, have been screened at two concentrations, including one environmental relevant concentration (ERC), for adverse effects on anti-predator behaviours by using the Vibra- tional Startle Response Assay on zebrafish larvae. Significant effects over anti-predator responses were equally observed in both exposure concentrations. Focusing on the ERC scenario, it was found that the startle response was the less affected behaviour, where ten pollutants from all chemical groups except for organochlorine, neonicotinoid and pyrethroids, altered this response. Interestingly, organic and inorganic pollutants showed op- posite effects on this response: whereas all organic pollutants decreased the startle response, the three remaining inorganic pollutants increased it. On the other hand, more pollutants affected habituation of the startle response of the larvae, where thirteen of the pollutants from all groups, except for herbicides, altered this behaviour at ERC, generally resulting in a faster habituation except for one OP and one marine toxin, which were able to delay this response. Ultimately, only one chemical from the OP, toxin, metal and non-metal element groups altered both the startle response and its habituation at both ERC and WSC. These results emphasize the environmental risk of the current levels of some neurotoxicants present in our aquatic ecosystems, as they are high enough to impair es- sential anti-predator behaviours in fish larvae.Consejo Nacional de Ciencia y Tecnologí

    Acrylamide acute neurotoxicity in adult zebrafish

    Get PDF
    Un articulo indexadoAcute exposure to acrylamide (ACR), a type-2 alkene, may lead to a ataxia, skeletal muscles weakness and numbness of the extremities in human and laboratory animals. In the present manuscript, ACR acute neurotoxicity has been characterized in adult zebrafish, a vertebrate model increasingly used in human neuropharmacology and toxicology research. At behavioral level, ACR-treated animals exhibited “depression-like” phenotype comorbid with anxiety behavior. At transcriptional level, ACR induced down-regulation of regeneration-associated genes and up-regulation of oligodendrocytes and reactive astrocytes markers, altering also the expression of genes involved in the presynaptic vesicle cycling. ACR induced also significant changes in zebrafish brain proteome and formed adducts with selected cysteine residues of specific proteins, some of them essential for the presynaptic function. Finally, the metabolomics analysis shows a depletion in the monoamine neurotransmitters, consistent with the comorbid depression and anxiety disorder, in the brain of the exposed fish.Conacy

    Implications of the use of organic fertilizers for antibiotic resistance gene distribution in agricultural soils and fresh food products. A plot-scale study

    Get PDF
    The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In order to help designing agricultural practices that minimize the spread of ARG, we fertilized, sown, and harvested lettuces and radish plants in experimental land plots for two consecutive agricultural cycles using four types of fertilizers: mineral fertilization, sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) identified a small, but significant overlap (<10%) between soil's and fertilizer microbiomes. Clinically relevant ARG were found in higher loads (up to 100 fold) in fertilized soils than in the initial soil, particularly in those treated with organic fertilizers, and their loads grossly correlated to the amount of antibiotic residues found in the corresponding fertilizer. Similarly, low, but measurable ARG loads were found in lettuce (tetM, sul1) and radish (sul1), corresponding the lowest values to samples collected from minerally fertilized fields. Comparison of soil samples collected along the total period of the experiment indicated a relatively year-round stability of soil microbiomes in amended soils, whereas ARG loads appeared as unstable and transient. The results indicate that ARG loads in soils and foodstuffs were likely linked to the contribution of bacteria from organic fertilizer to the soil microbiomes, suggesting that an adequate waste management and good pharmacological and veterinarian practicesmay significantly reduce the presence of these ARGs in agricultural soils and plant products.Postprint (published version

    Occurrence of antibiotics in Lettuce (Lactuca sativa L.) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: Crop and human health implications

    Get PDF
    Recent studies have demonstrated the crop uptake of antibiotics (ABs) from soils treated with AB-carrying fertilisers. However, there is a lack of plot-scale studies linking their effects at the agronomic and metabolomic/transcriptomic level to their impact on human health. This paper assesses the plant uptake of 23 ABs following two productive cycles of lettuce and radish cropped with sewage sludge, pig slurry, the organic fraction of municipal solid waste, or chemical fertilisation under plot-scale conditions (32 plots spanning 3-10 m2 each). AB uptake by plants depended on both the vegetable and the AB class and was higher in radish than in lettuce edible parts. Levels ranged from undetectable to up to 76 ng/g (fresh weight). Repetitive organic fertilisation resulted in an increase in the concentration of ABs in lettuce leaves, but not in radish roots. Significant metabolomic and transcriptomic changes were observed following soil fertilisation. Nevertheless, a human health risk assessment indicates that the occurrence of ABs in lettuce or radish edible parts does not pose any risk. To our knowledge, this is the first holistic plot-scale study demonstrating that the use of organic fertilisers containing ABs is safe for crop security and human health.The authors gratefully acknowledge the financial support of the Spanish Ministry of Science and Innovation through projects AGL2017- 89518-R and RTI2018-096175-B-I00. IDAEA-CSIC is a Severo Ochoa Centre of Excellence (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S). Mònica Escolà Casas wishes to thank the Beatriu de Pinós 2018 grant programme (MSCA grant agreement number 801370) for the funding.Peer ReviewedPostprint (published version

    Responses to organic pollutants in the tropical Pacific and subtropical Atlantic Oceans by pelagic marine bacteria

    Get PDF
    Background and chronic pollution by organic pollutants (OPs) is a widespread threat in the oceans with still uncharacterized effects on marine ecosystems and the modulation of major biogeochemical cycles. The ecological impact and toxicity of this anthropogenic dissolved organic carbon (ADOC) is not related to the presence of a single compound but to the co-occurrence of a myriad of synthetic chemicals with largely unknown effects on heterotrophic microbial communities. We have analyzed the metabolic capacity of metagenome-assembled genomes (MAGs) of natural oceanic communities from the north Pacific (Costa Rica dome) and Atlantic oceans challenged with environmentally relevant levels of ADOC. In the Atlantic, ADOC-exposed MAGs responded transcriptionally more strongly compared to controls than in the Pacific, possibly mirroring the higher relevance of ADOC compounds as carbon source in oligotrophic environments. The largest proportions of transcripts originated from MAGs belonging in the families Rhodobacteraceae and Flavobacteriaceae, known to play a role on consumption of several OPs. In the Atlantic, archaeal Poseidoniales showed the highest transcription levels after 2 h of ADOC exposure, although no increase of relative abundances in the DNA pool was recorded after 24 h, whereas Methylophaga showed the opposite pattern. Both taxa are suggested to be actively involved in the consumption of biogenic alkanes produced by cyanobacteria. We observed similar gene expression profiles of alkane degradation and methylotrophy signature genes. These findings, plus the chemical degradation of alkanes measured in the experiments, provides experimental evidence of the consumption of anthropogenic hydrocarbons and synthetic chemicals at the low concentrations found in the ocean, and modulation of microbiomes by ADOC
    corecore