19 research outputs found
Introducing DINGfest: An architecture for next generation SIEM systems
Isolated and easily protectable IT systems have developed into fragile and complex structures over the past years. These systems host manifold, flexible and highly connected applications, mainly in virtual environments. To ensure protection of those infrastructures, Security Incident and Event Management (SIEM) systems have been deployed. Such systems, however, suffer from many shortcomings such as lack of mechanisms for forensic readiness. In this extended abstract, we identify these shortcomings and propose an architecture which addresses them. It is developed within the DINGfest project, on which we report and for which we seek initial feedback from the community
Classifying malware attacks in IaaS cloud environments
In the last few years, research has been motivated to provide a categorization and classification of security concerns accompanying the growing adaptation of Infrastructure as a Service (IaaS) clouds. Studies have been motivated by the risks, threats and vulnerabilities imposed by the components within the environment and have provided general classifications of related attacks, as well as the respective detection and mitigation mechanisms. Virtual Machine Introspection (VMI) has been proven to be an effective tool for malware detection and analysis in virtualized environments. In this paper, we classify attacks in IaaS cloud that can be investigated using VMI-based mechanisms. This infers a special focus on attacks that directly involve Virtual Machines (VMs) deployed in an IaaS cloud. Our classification methodology takes into consideration the source, target, and direction of the attacks. As each actor in a cloud environment can be both source and target of attacks, the classification provides any cloud actor the necessary knowledge of the different attacks by which it can threaten or be threatened, and consequently deploy adapted VMI-based monitoring architectures. To highlight the relevance of attacks, we provide a statistical analysis of the reported vulnerabilities exploited by the classified attacks and their financial impact on actual business processes
Improving Digital Forensics and Incident Analysis in Production Environments by Using Virtual Machine Introspection
Main memory forensics and its special form, virtual machine introspection (VMI), are powerful tools for digital forensics and can be used to improve the security of computer-based systems. However, their use in production systems is often not possible. This work identifies the causes and offers practical solutions to apply these techniques in cloud computing and on mobile devices to improve digital forensics and incident analysis.
Four key challenges must be tackled. The first challenge is that many existing solutions are not reproducible, for example, because the corresponding software components are not available, obsolete or incompatible. The use of these tools is also often complex and can lead to a crash of the system to be monitored in case of incorrect use. To solve this problem, this thesis describes the design and implementation of Libvmtrace, which is a framework for the introspection of Linux-based virtual machines. The focus of the developed design is to implement frequently used methods in encapsulated modules so that they are easy for developers to use, optimize and test.
The second challenge is that many production systems do not provide an interface for main memory forensics and virtual machine introspection. To address this problem, this thesis describes possible solutions for how such an interface can be implemented on mobile devices and in cloud environments designed to protect main memory from unprivileged access. We discuss how cold boot attacks, the ARM TrustZone and the hypervisor of cloud servers can be used to acquire data from storage.
The third challenge is how to reconstruct information from main memory efficiently. This thesis describes how these questions can be solved by employing two practical examples. The first example involves extracting the keys of encrypted TLS connections from the main memory of applications to decrypt network traffic without affecting the performance of the monitored application. The TLSKex and DroidKex architecture describe two approaches to localize the keys efficiently with the help of semantic knowledge in the main memory of applications. The second example discusses how to monitor and document SSH sessions of potential attackers from outside of a virtual machine. It is important that the monitoring routines are not noticed by an attacker. To achieve this, we evaluate how to optimize the performance of the monitoring mechanism.
The fourth challenge is how to deal with the performance degradation caused by introspection in productive systems. This thesis discusses how this can be achieved using the example of a SIEM system. To reduce the performance overhead, we describe how to configure the monitoring routine to collect only the information needed to detect incidents. Also, we describe two approaches that permit the monitoring routine to be dynamically adjusted at runtime to extract more information if necessary so that incidents can be better analyzed
