1,442 research outputs found
Integrated spatial multiplexing of heralded single photon sources
The non-deterministic nature of photon sources is a key limitation for single
photon quantum processors. Spatial multiplexing overcomes this by enhancing the
heralded single photon yield without enhancing the output noise. Here the
intrinsic statistical limit of an individual source is surpassed by spatially
multiplexing two monolithic silicon correlated photon pair sources,
demonstrating a 62.4% increase in the heralded single photon output without an
increase in unwanted multi-pair generation. We further demonstrate the
scalability of this scheme by multiplexing photons generated in two waveguides
pumped via an integrated coupler with a 63.1% increase in the heralded photon
rate. This demonstration paves the way for a scalable architecture for
multiplexing many photon sources in a compact integrated platform and achieving
efficient two photon interference, required at the core of optical quantum
computing and quantum communication protocols.Comment: 10 pages, 3 figures, comments welcom
First cohomology for finite groups of Lie type: simple modules with small dominant weights
Let be an algebraically closed field of characteristic , and let
be a simple, simply connected algebraic group defined over .
Given , set , and let be the corresponding
finite Chevalley group. In this paper we investigate the structure of the first
cohomology group where is the
simple -module of highest weight . Under certain very mild
conditions on and , we are able to completely describe the first
cohomology group when is less than or equal to a fundamental dominant
weight. In particular, in the cases we consider, we show that the first
cohomology group has dimension at most one. Our calculations significantly
extend, and provide new proofs for, earlier results of Cline, Parshall, Scott,
and Jones, who considered the special case when is a minimal nonzero
dominant weight.Comment: 24 pages, 5 figures, 6 tables. Typos corrected and some proofs
streamlined over previous versio
Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer
We report the first demonstration of simultaneous multiimpairment
monitoring at ultrahigh bitrates using a THz bandwidth
photonic-chip-based radio-frequency (RF) spectrum analyzer. Our approach
employs a 7 cm long, highly nonlinear (γ ≈9900 /W/km), dispersion
engineered chalcogenide planar waveguide to capture the RF spectrum of an
ultrafast 640 Gb/s signal, based on cross-phase modulation, from which we
numerically retrieve the autocorrelation waveform. The relationship
between the retrieved autocorrelation trace and signal impairments is
exploited to simultaneously monitor dispersion, in-band optical signal to
noise ratio (OSNR) and timing jitter from a single measurement. This novel
approach also offers very high OSNR measurement dynamic range (> 30
dB) and is scalable to terabit data rates
Overview of Advanced LIGO Adaptive Optics
This is an overview of the adaptive optics used in Advanced LIGO (aLIGO),
known as the thermal compensation system (TCS). The thermal compensation system
was designed to minimize thermally-induced spatial distortions in the
interferometer optical modes and to provide some correction for static
curvature errors in the core optics of aLIGO. The TCS is comprised of ring
heater actuators, spatially tunable CO laser projectors and Hartmann
wavefront sensors. The system meets the requirements of correcting for nominal
distortion in Advanced LIGO to a maximum residual error of 5.4nm, weighted
across the laser beam, for up to 125W of laser input power into the
interferometer
miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity
Using quantitative analyses, we identified microRNAs (miRNAs) that were abundantly expressed in visual cortex and that responded to dark rearing and/or monocular deprivation. The most substantially altered miRNA, miR-132, was rapidly upregulated after eye opening and was delayed by dark rearing. In vivo inhibition of miR-132 in mice prevented ocular dominance plasticity in identified neurons following monocular deprivation and affected the maturation of dendritic spines, demonstrating its critical role in the plasticity of visual cortex circuits.National Eye Institute (Ruth L. Kirschstein Postdoctoral Fellowship 1F32EY020066-01)Simons Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (EY017098)National Institutes of Health (U.S.) (EY007023
Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors
Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK092760)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK49216)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant U54DK110805)National Heart, Lung, and Blood Institute (Grant UO1-HL100001)National Heart, Lung, and Blood Institute (Grant U01HL134812)National Heart, Lung, and Blood Institute (Grant R01HL04880)National Institutes of Health (U.S.) (Grant R24OD017870-01
Type IV Pilus-Mediated Inhibition of \u3ci\u3eAcinetobacter baumannii\u3c/i\u3e Biofilm Formation by Phenothiazine Compounds
Infections by pathogenic Acinetobacter species represent a significant burden on the health care system, despite their relative rarity, due to the difficulty of treating infections through oral antibiotics. Multidrug resistance is commonly observed in clinical Acinetobacter infections and multiple molecular mechanisms have been identified for this resistance, including multidrug efflux pumps, carbapenemase enzymes, and the formation of bacterial biofilm in persistent infections. Phenothiazine compounds have been identified as a potential inhibitor of type IV pilus production in multiple Gram-negative bacterial species. Here, we report the ability of two phenothiazines to inhibit type IV pilus-dependent surface (twitching) motility and biofilm formation in multiple Acinetobacter species. Biofilm formation was inhibited in both static and continuous flow models at micromolar concentrations without significant cytotoxicity, suggesting that type IV pilus biogenesis was the primary molecular target for these compounds. These results suggest that phenothiazines may be useful lead compounds for the development of biofilm dispersal agents against Gram-negative bacterial infections
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
