5,258 research outputs found

    Changes in the near edge X-ray absorption fine structure of hybrid organic-inorganic resists upon exposure

    Full text link
    We report on the near edge X-ray absorption fine structure (NEXAFS) spectroscopy of hybrid organic-inorganic resists. These materials are nonchemically amplified systems based on Si, Zr, and Ti oxides, synthesized from organically modified precursors and transition metal alkoxides by a sol-gel route and designed for ultraviolet, extreme ultraviolet and electron beam lithography. The experiments were conducted using a scanning transmission X-ray microscope (STXM) which combines high spatial-resolution microscopy and NEXAFS spectroscopy. The absorption spectra were collected in the proximity of the carbon edge (~ 290 eV) before and after in situ exposure, enabling the measurement of a significant photo-induced degradation of the organic group (phenyl or methyl methacrylate, respectively), the degree of which depends on the configuration of the ligand. Photo-induced degradation was more efficient in the resist synthesized with pendant phenyl substituents than it was in the case of systems based on bridging phenyl groups. The degradation of the methyl methacrylate group was relatively efficient, with about half of the initial ligands dissociated upon exposure. Our data reveal that the such dissociation can produce different outcomes, depending on the structural configuration. While all the organic groups were expected to detach and desorb from the resist in their entirety, a sizeable amount of them remain and form undesired byproducts such as alkene chains. In the framework of the materials synthesis and engineering through specific building blocks, these results provide a deeper insight into the photochemistry of resists, in particular for extreme ultraviolet lithography

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    Online prostate cancer screening decision aid for at-risk men: A randomized trial

    Get PDF
    Objective: This study examines the efficacy of an online decision aid (DA) for men with a family history of prostate cancer. Methods: Unaffected Australian men (40 - 79 years) with at least one affected relative completed the first online questionnaire, were randomized to read either the tailored DA (intervention) or nontailored information about prostate cancer screening (control), then completed a questionnaire postreading and 12 months later. The primary outcome was decisional conflict regarding prostate specific antigen (PSA) testing. The impact of the DA on longitudinal outcomes was analyzed by using random intercept mixed effects models. Logistic and linear regressions were used to analyze the impact of the DA on screening behavior and decision regret. Stage of decision-making was tested as a moderator for decisional conflict and decision regret. The frequency of online material access was recorded. Results: the DA had no effect on decisional conflict, knowledge, inclination toward PSA testing, accuracy of perceived risk, or screening behavior. However, among men considering PSA testing, those who read the DA had lower decision regret compared with men who read the control materials, β=.34 , p \u3c.001, 95% confidence interval (CI) = [.22, .53]. Conclusions: This is the first study to our knowledge to evaluate the uptake and efficacy of an online screening DA among men with a family history of prostate cancer. Men who were undecided about screening at baseline benefitted from the DA, experiencing less regret 12 months later. In relation to decisional conflict, the control materials may have operated as a less complex and equally informative DA

    Assortative human pair-bonding for partner ancestry and allelic variation of the dopamine receptor D4 (DRD4) gene

    Get PDF
    The 7R allele of the dopamine receptor D4 gene has been associated with attention-deficit hyperactivity disorder and risk taking. On the cross-population scale, 7R allele frequencies have been shown to be higher in populations with more of a history of long-term migrations. It has also been shown that the 7R allele is associated with individuals having multiple-ancestries. Here we conduct a replication of this latter finding with two independent samples. Measures of subjects’ ancestry are used to examine past reproductive bonds. The individuals’ history of inter-racial/ancestral dating and their feelings about this are also assessed. Tentative support for an association between multiple ancestries and the 7R allele were found. These results are dependent upon the method of questioning subjects about their ancestries. Inter-racial dating and feelings about inter-racial pairing were not related to the presence of the 7R allele. This might be accounted for by secular trends that might have substantively altered the decision-making process employed when considering relationships with individuals from different groups. This study provides continued support for the 7R allele playing a role in migration and/or mate choice patterns. However, replications and extensions of this study are needed and must carefully consider how ancestry/race is assessed

    Exploiting atomic layer deposition for fabricating sub-10 nm X-ray lenses

    Full text link
    Moving towards significantly smaller nanostructures, direct structuring techniques such as electron beam lithography approach fundamental limitations in feature size and aspect ratios. Application of nanostructures like diffractive X-ray lenses requires feature sizes of below 10 nm to enter a new regime in high resolution X-raymicroscopy. As such dimensions are difficult to obtain using conventional electron beam lithography, we pursue a line-doubling approach. We demonstrate that thismethod yields structure sizes as small as 6.4 nm. X-ray lenses fabricated in this way are tested for their efficiency and microscopic resolution. In addition, the line-doubling technique is successfully extended to a six-fold scheme, where each line in a template structure written by electron beam lithography evolves into six metal lines

    Nanoscale X-ray investigation of magnetic metallofullerene peapods

    Full text link
    Endohedral lanthanide ions packed inside carbon nanotubes (CNTs) in a one-dimensional assembly have been studied with a combination of high resolution transmission electron microscopy (HRTEM), scanning transmission X-ray microscopy (STXM), and X-ray magnetic circular dichroism (XMCD). By correlating HRTEM and STXM images we show that structures down to 30 nm are resolved with chemical contrast and record X-ray absorption spectra from endohedral lanthanide ions embedded in individual nanoscale CNT bundles. XMCD measurements of an Er3_3N@C80_{80} bulk sample and a macroscopic assembly of filled CNTs indicates that the magnetic properties of the endohedral Er3+ ions are unchanged when encapsulated in CNTs. This study demonstrates the feasibility of local magnetic X-ray characterization of low concentrations of lanthanide ions embedded in molecular nanostructures

    Beyond the Power Law: Uncovering Stylized Facts in Interbank Networks

    Full text link
    We use daily data on bilateral interbank exposures and monthly bank balance sheets to study network characteristics of the Russian interbank market over Aug 1998 - Oct 2004. Specifically, we examine the distributions of (un)directed (un)weighted degree, nodal attributes (bank assets, capital and capital-to-assets ratio) and edge weights (loan size and counterparty exposure). We search for the theoretical distribution that fits the data best and report the "best" fit parameters. We observe that all studied distributions are heavy tailed. The fat tail typically contains 20% of the data and can be mostly described well by a truncated power law. Also the power law, stretched exponential and log-normal provide reasonably good fits to the tails of the data. In most cases, however, separating the bulk and tail parts of the data is hard, so we proceed to study the full range of the events. We find that the stretched exponential and the log-normal distributions fit the full range of the data best. These conclusions are robust to 1) whether we aggregate the data over a week, month, quarter or year; 2) whether we look at the "growth" versus "maturity" phases of interbank market development; and 3) with minor exceptions, whether we look at the "normal" versus "crisis" operation periods. In line with prior research, we find that the network topology changes greatly as the interbank market moves from a "normal" to a "crisis" operation period.Comment: 17 pages, 9 figure

    Forest conservation delivers highly variable coral reef conservation outcomes

    Get PDF
    Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land–sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land–sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8–58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land–sea planning

    Development of a Microchip-Based Flow Cytometer with Integrated Optics – Device Design, Fabrication, and Testing

    Get PDF
    Lab-on-a-chip technologies have created a burgeoning number of new and novel devices designed to automate biological processes on-chip in an efficient and inexpensive format for far reaching point-of-care (POC) medicine and diagnostic treatments and for remote and on-line monitoring functions. This work designed a device that integrated advanced optical functionality on-chip with the microfluidics to relieve the reliance on traditional bulky and expensive free-space optics and a high-quality light source. The multimodal input beam was reshaped into an optimized geometry in the microchannel via a 2D system of lenses - improving the quality and reliability of detection through uniform detection of particles. A uniform beam geometry across the sample stream with a uniform beam width will allow repeatable excitation and burst duration to allow for more reliable and predictable detection. Numerous beam geometries were created and the quality and illumination properties confirmed by testing each with a couple sizes of fluorescent and non-fluorescent microspheres to test the effect of beam geometry and particle size combination on device performance. The measured coefficient of variation (CV) for fluorescent beads was found to have a particular beam geometry that yielded best device performance based on the bead size. Fluorescent beads 2.5µm in diameter had a CV of 8.5% for a 3.6 µm beam waist while 6 µm beads yielded a 14.6% CV with a 10 µm beam waist. When measuring scatter and fluorescence signal from a 10 µm the 2.5- and 6.0 µm beads gave 11.4% and 15.8% and 15.9% and 20.4% fluorescent and scatter CVs for each set of beads, respectively. Separately testing each beam geometry with 1-, 2-, and 5 µm beads did not yield any predictable ideal beam-bead ideal pairing for best performance. Lastly, further integration of optical function was shown through the on-chip collection of signals; CVs of 29% and 30% were measured for side scatter and forward scatter, respectively, for 5 µm beads. The reliability of this all-optically guided scheme was confirmed by comparing it to a simultaneously recorded free-space collection scheme. The coincidence rate was found to be 94% and 96% for the side scatter and forward scatter schemes. Both had very low false positive rates – below 0.5% - with missed detection rates that were satisfactory but in need of improvement. Sources of noise and device improvements were identified and suggested.Doctor of Philosophy (PhD

    The role of religion in the longer-range future, April 6, 7, and 8, 2006

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This conference that took place during April 6, 7, and 8, 2006. Co-organized by David Fromkin, Director, Frederick S. Pardee Center for the Study of the Longer-Range Future, and Ray L. Hart, Dean ad interim Boston University School of TheologyThe conference brought together some 40 experts from various disciplines to ponder upon the “great dilemma” of how science, religion, and the human future interact. In particular, different panels looked at trends in what is happening to religion around the world, questions about how religion is impacting the current political and economic order, and how the social dynamics unleashed by science and by religion can be reconciled.Carnegie Council on Ethics and International Affair
    corecore