283 research outputs found
Chondrites as samples of differentiated planetesimals
Chondritic meteorites are unmelted and variably metamorphosed aggregates of the earliest solids of the solar system. The variety of metamorphic textures in chondrites motivated the “onion shell” model in which chondrites originated at varying depths within a parent body heated primarily by the short-lived radioisotope 26Al, with the highest metamorphic grade originating nearest the center. Allende and a few other chondrites possess a unidirectional magnetization that can be best explained by a core dynamo on their parent body, indicating internal melting and differentiation. Here we show that a parent body that accreted to >~200 km in radius by ~ 1.5 Ma after the formation of calcium–aluminum-rich inclusions (CAIs) would have a differentiated interior, and ongoing accretion would add a solid undifferentiated crust overlying a differentiated interior, consistent with formational and evolutionary constraints inferred for the CV parent body. This body could have produced a magnetic field lasting more than 10 Ma. This hypothesis represents a new model for the origin of some chondrites, presenting them as the unprocessed crusts of internally differentiated early planetesimals. Such bodies may exist in the asteroid belt today; the shapes and masses of the two largest asteroids, 1 Ceres and 2 Pallas, can be consistent with differentiated interiors, conceivably with small iron cores with hydrated silicate or ice–silicate mantles, covered with undifferentiated crusts.National Science Foundation (U.S.) (NSF Astronomy CAREER grant)Mitsui & Co. (U.S.A.), Inc. ( Mitsui Career Development Professorship)United States. National Aeronautics and Space Administration (NASA Origins grant)Massachusetts Institute of Technology (Victor P. Starr Career Development Professorship)United States. National Aeronautics and Space Administration (NASA/Dawn co-investigator grant
Evidence for Surface Water Ice in the Lunar Polar Regions Using Reflectance Measurements from the Lunar Orbiter Laser Altimeter and Temperature Measurements from the Diviner Lunar Radiometer Experiment
We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure
Mendelian randomization with fine‐mapped genetic data: choosing from large numbers of correlated instrumental variables
Mendelian randomization uses genetic variants to make causal inferences about the effect of a risk factor on an outcome. With fine‐mapped genetic data, there may be hundreds of genetic variants in a single gene region any of which could be used to assess this causal relationship. However, using too many genetic variants in the analysis can lead to spurious estimates and inflated Type 1 error rates. But if only a few genetic variants are used, then the majority of the data is ignored and estimates are highly sensitive to the particular choice of variants. We propose an approach based on summarized data only (genetic association and correlation estimates) that uses principal components analysis to form instruments. This approach has desirable theoretical properties: it takes the totality of data into account and does not suffer from numerical instabilities. It also has good properties in simulation studies: it is not particularly sensitive to varying the genetic variants included in the analysis or the genetic correlation matrix, and it does not have greatly inflated Type 1 error rates. Overall, the method gives estimates that are less precise than those from variable selection approaches (such as using a conditional analysis or pruning approach to select variants), but are more robust to seemingly arbitrary choices in the variable selection step. Methods are illustrated by an example using genetic associations with testosterone for 320 genetic variants to assess the effect of sex hormone related pathways on coronary artery disease risk, in which variable selection approaches give inconsistent inferences
Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia
Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML
Inhibition of BET proteins and epigenetic signaling as a potential treatment for osteoporosis
International audienceHistone modifications are important for maintaining the transcription program. BET proteins, an important class of " histone reading proteins " , have recently been described as essential in bone biology. This study presents the therapeutic opportunity of BET protein inhibition in osteoporosis. We find that the pharmacological BET protein inhibitor JQ1 rescues pathologic bone loss in a post-ovariectomy osteoporosis model by increasing the trabecular bone volume and restoring mechanical properties. The BET protein inhibition suppresses osteoclast differentiation and activity as well as the osteoblastogenesis in vitro. Moreover, we show that treated non-resorbing osteoclasts could still activate osteoblast differentiation. In addition, specific inhibition of BRD4 using RNA interference inhibits osteoclast differentiation but strongly activates osteoblast mineralization activity. Mechanistically, JQ1 inhibits expression of the master osteoclast transcription factor NFATc1 and the transcription factor of osteoblast Runx2. These findings strongly support that targeting epigenetic chromatin regulators such as BET proteins may offer a promising alternative for the treatment of bone-related disorders such as osteoporosis
The Value of Sentinel Lymph Node Mapping for the Staging of Node-Negative Colon Cancer
Objectives:
Mediation analysis to assess the protective impact of sentinel lymph node (SLN) mapping on prognosis and survival of patients with colon cancer through a more precise evaluation of the lymph node (LN) status.
Background:
Up to 20% of patients with node-negative colon cancer develop disease recurrence. Conventional histopathological LN examination may be limited in describing the real metastatic burden of LN.
Methods:
Data of 312 patients with stage I & II colon cancer was collected prospectively. Patients were either staged using intraoperative SLN mapping with multilevel sectioning and immunohistochemical staining of the SLN or conventional techniques. The value of the SLN mapping for the detection of truly node-negative patients was assessed using Cox regression and mediation analysis.
Results:
SLN mapping was performed in 143 patients. Disease recurrence was observed in 13 (9.1%) patients staged with SLN mapping and in 27 (16%) staged conventionally. Five-year overall survival (OS) rate was 82.7% (95% confidence interval [CI], 76.5–89.4%) with SLN mapping compared with 65.8% (95% CI, 58.8–73.7%). Five-year cancer-specific survival (CSS) was 95.1% (95% CI, 91.3–99.0%) with SLN mapping compared with 92.5% (95% CI, 88.0–97.2%). Node-negative staging with SLN mapping was associated with significantly better OS (hazard ratio [HR], 0.64; 95% CI, 0.56–0.72; P < 0.001) and CSS (HR, 0.49; 95% CI, 0.39–0.61; P < 0.001) in multivariate analysis. Mediation analysis confirmed a direct protective effect of SLN mapping on OS (HR, 0.78; 95% CI, 0.52–0.96; P < 0.01) and disease-free survival (DFS) (HR, 0.75; 95% CI, 0.48–0.89; P < 0.01).
Conclusions:
Staging performed by SLN mapping with multilevel sectioning provides more accurate results than conventional staging. The observed clinically relevant and statistically significant benefit in OS and DFS is explained by a more accurate detection of positive LN by SLN mapping
Evaluation of the prognostic relevance of the recommended minimum number of lymph nodes in colorectal cancer—a propensity score analysis
Purpose
Nodal status in colorectal cancer (CRC) is an important prognostic factor, and adequate lymph node (LN) staging is crucial. Whether the number of resected and analysed LN has a direct impact on overall survival (OS), cancer-specific survival (CSS) and disease-free survival (DFS) is much discussed. Guidelines request a minimum number of 12 LN to be analysed. Whether that threshold marks a prognostic relevant cut-off remains unknown.
Methods
Patients operated for stage I–III CRC were identified from a prospectively maintained database. The impact of the number of analysed LN on OS, CSS and DFS was assessed using Cox regression and propensity score analysis.
Results
Of the 687 patients, 81.8% had ≥ 12 LN resected and analysed. Median LN yield was 17.0 (IQR 13.0–23.0). Resection and analysis of ≥ 12 LN was associated with improved OS (HR = 0.73, 95% CI: 0.56–0.95, p = 0.033), CSS (HR 0.52, 95% CI: 0.31–0.85, p = 0.030) and DFS (HR = 0.73, 95% CI: 0.57–0.95, p = 0.030) in multivariate Cox analysis. After adjusting for biasing factors with propensity score matching, resection of ≥ 12 LN was significantly associated with improved OS (HR = 0.59; 95% CI: 0.43–0.81; p = 0.002), CSS (HR = 0.34; 95% CI: 0.20–0.60; p < 0.001) and DFS (HR = 0.55; 95% CI: 0.41–0.74; p < 0.001) compared to patients with < 12 LN.
Conclusion
Eliminating biasing factors by a propensity score matching analysis underlines the prognostic importance of the number of analysed LN. The set threshold marks the minimum number of required LN but nevertheless represents a cut-off regarding outcome in stage I–III CRC. This analysis therefore highlights the significance and importance of adherence to surgical oncological standards
Disparity of turbinal bones in placental mammals
Turbinals are key bony elements of the mammalian nasal cavity, involved in heat and moisture conservation as well as olfaction. While turbinals are well known in some groups, their diversity is poorly understood at the scale of placental mammals, which span 21 orders. Here, we investigated the turbinal bones and associated lamellae for one representative of each extant order of placental mammals. We segmented and isolated each independent turbinal and lamella and found an important diversity of variation in the number of turbinals, as well as their size, and shape. We found that the turbinal count varies widely, from zero in the La Plata dolphin, (Pontoporia blainvillei) to about 110 in the African bush elephant (Loxodonta africana). Multiple turbinal losses and additional gains took place along the phylogeny of placental mammals. Some changes are clearly attributed to ecological adaptation, while others are probably related to phylogenetic inertia. In addition, this work highlights the problem of turbinal nomenclature in some placental orders with numerous and highly complex turbinals, for which homologies are extremely difficult to resolve. Therefore, this work underscores the importance of developmental studies to better clarify turbinal homology and nomenclature and provides a standardized comparative framework for further research
Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease.
BACKGROUND: Lipoprotein-related traits have been consistently identified as risk factors for atherosclerotic cardiovascular disease, largely on the basis of studies of coronary artery disease (CAD). The relative contributions of specific lipoproteins to the risk of peripheral artery disease (PAD) have not been well defined. We leveraged large-scale genetic association data to investigate the effects of circulating lipoprotein-related traits on PAD risk. METHODS: Genome-wide association study summary statistics for circulating lipoprotein-related traits were used in the mendelian randomization bayesian model averaging framework to prioritize the most likely causal major lipoprotein and subfraction risk factors for PAD and CAD. Mendelian randomization was used to estimate the effect of apolipoprotein B (ApoB) lowering on PAD risk using gene regions proxying lipid-lowering drug targets. Genes relevant to prioritized lipoprotein subfractions were identified with transcriptome-wide association studies. RESULTS: ApoB was identified as the most likely causal lipoprotein-related risk factor for both PAD (marginal inclusion probability, 0.86; P=0.003) and CAD (marginal inclusion probability, 0.92; P=0.005). Genetic proxies for ApoB-lowering medications were associated with reduced risk of both PAD (odds ratio,0.87 per 1-SD decrease in ApoB [95% CI, 0.84-0.91]; P=9×10-10) and CAD (odds ratio,0.66 [95% CI, 0.63-0.69]; P=4×10-73), with a stronger predicted effect of ApoB lowering on CAD (ratio of effects, 3.09 [95% CI, 2.29-4.60]; P<1×10-6). Extra-small very-low-density lipoprotein particle concentration was identified as the most likely subfraction associated with PAD risk (marginal inclusion probability, 0.91; P=2.3×10-4), whereas large low-density lipoprotein particle concentration was the most likely subfraction associated with CAD risk (marginal inclusion probability, 0.95; P=0.011). Genes associated with extra-small very-low-density lipoprotein particle and large low-density lipoprotein particle concentration included canonical ApoB pathway components, although gene-specific effects were variable. Lipoprotein(a) was associated with increased risk of PAD independently of ApoB (odds ratio, 1.04 [95% CI, 1.03-1.04]; P=1.0×10-33). CONCLUSIONS: ApoB was prioritized as the major lipoprotein fraction causally responsible for both PAD and CAD risk. However, ApoB-lowering drug targets and ApoB-containing lipoprotein subfractions had diverse associations with atherosclerotic cardiovascular disease, and distinct subfraction-associated genes suggest possible differences in the role of lipoproteins in the pathogenesis of PAD and CAD
Promoting More Physical Activity and Less Sedentary Behaviour During the COVID-19 Situation – SportStudisMoveYou (SSMY): A Randomized Controlled Trial
Objective: To determine the effect of an innovative, online-based intervention, addressing the possible decline of physical activity (PA) and increase of sedentary behavior (SB) during COVID-19 stay at home restrictions in Switzerland.
Methods: This study investigated the effect of a two-week, social cognitive theory based, online-video moderate to vigorous (MV)PA or SB intervention on MVPA and SB behaviour and intention via a 3 group by 2 time point parallel randomized controlled trial during the COVID-19 pandemic. Adults (≥18 yo) were recruited over the internet between April 10th and April 19th 2020 (n = 129; 75.2% female; mean age = 29.0 [SD 11.8] years). Both intervention groups received five videos targeting either SB for the SB group or MVPA for the MVPA group and were compared to an attention control group (fruit and vegetable consumption). It was hypothesized that MVPA time and intention would increase for the MVPA group and the SB group would outperform control on SB behaviour and intention indicators.
Results: No significant interactions were found for the MVPA group (n = 41) versus control (n = 40). Only one significant interaction was measured for the SB group (n = 48; intention of active breaks F = (2,114) = 5.84, p = 0.004, ηp2 = 0.09). Although mostly non-significant and small effects, the MVPA group showed results pointing in the hypothesized direction on all PA indicators and the SB on all SB indicators, respectively.
Conclusion: Considering this study’s limitations (e.g. small intervention dose), video-based online PA and SB interventions seem promising and feasible. This approach is appropriate for COVID-19 and other stay at home situations
- …
