814 research outputs found
Supraclavicularis proprius muscle associated with supraclavicular nerve entrapment
Entrapment neuropathy of the supraclavicular nerve is rare and, when it occurs, is usually attributable to branching of the nerve into narrow bony clavicular canals. We describe another mechanism for entrapment of this nerve with the aberrant muscle; supraclavicularis being found during the routine dissection of an embalmed 82-year-old cadaver. Our report details a unique location for this rare muscular variation whereby the muscle fibres originated posteriorly on the medial aspect of the clavicle before forming a muscular arch over the supraclavicular nerve and passing laterally towards the trapezius and acromion. We recommend that in clinical instances of otherwise unexplained unilateral clavicular pain or tenderness, nerve compression from the supraclavicularis muscle must be borne in mind.
Stability of the Period-Doubled Core of the 90-degree Partial in Silicon
In a recent Letter [N. Lehto and S. Oberg, Phys. Rev. Lett. 80, 5568 (1998)],
Lehto and Oberg investigated the effects of strain fields on the core structure
of the 90-degree partial dislocation in silicon, especially the influence of
the choice of supercell periodic boundary conditions in theoretical
simulations. We show that their results for the relative stability between the
two structures are in disagreement with cell-size converged tight-binding total
energy (TBTE) calculations, which suggest the DP core to be more stable,
regardless of the choice of boundary condition. Moreover, we argue that this
disagreement is due to their use of a Keating potential.Comment: 1 page. Submitted to Comments section of PRL. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/rn_dcom/index.htm
Semiconductor effective charges from tight-binding theory
We calculate the transverse effective charges of zincblende compound
semiconductors using Harrison's tight-binding model to describe the electronic
structure. Our results, which are essentially exact within the model, are found
to be in much better agreement with experiment than previous
perturbation-theory estimates. Efforts to improve the results by using more
sophisticated variants of the tight-binding model were actually less
successful. The results underline the importance of including quantities that
are sensitive to the electronic wavefunctions, such as the effective charges,
in the fitting of tight-binding models.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#jb_t
Atomic structure of dislocation kinks in silicon
We investigate the physics of the core reconstruction and associated
structural excitations (reconstruction defects and kinks) of dislocations in
silicon, using a linear-scaling density-matrix technique. The two predominant
dislocations (the 90-degree and 30-degree partials) are examined, focusing for
the 90-degree case on the single-period core reconstruction. In both cases, we
observe strongly reconstructed bonds at the dislocation cores, as suggested in
previous studies. As a consequence, relatively low formation energies and high
migration barriers are generally associated with reconstructed
(dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction
defect are found to be strongly bound in the 30-degree partial, while the
opposite is true in the case of 90-degree partial, where such complexes are
found to be only marginally stable at zero temperature with very low
dissociation barriers. For the 30-degree partial, our calculated formation
energies and migration barriers of kinks are seen to compare favorably with
experiment. Our results for the kink energies on the 90-degree partial are
consistent with a recently proposed alternative double-period structure for the
core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di
Quantitation Of Antiretrovirals In Alternative Matrices
The human immunodeficiency virus (HIV) pandemic is a growing concern, affecting almost 40 million people worldwide. Treatment for HIV infection consists of highly active antiretroviral therapy (HAART) to block different steps in the viral lifecycle, ultimately reducing HIV RNA to undetectable levels in the plasma. However, HIV RNA can be detected in numerous reservoirs outside of the blood despite the use of HAART. Therefore, measurement of antiretroviral (ARV) drugs in other biological matrices is important to broaden our understanding of HIV transmission, the development of viral resistance with sub-optimal ARV exposure, and fetal and neonatal drug exposure. This work describes the development of novel liquid chromatography methodologies and the subsequent quantitation of specific ARVs in four alternative biological matrices. Three ARVs commonly used in the developing world were tested for their shortterm stability in whole blood. These drugs were shown to be stable in whole blood for at least 24 hr when stored at room temperature or incubated at 37 to 40°C. Next, we measured nevirapine (NVP) concentrations in breast milk since it is regularly administered to prevent maternal transmission. Our data suggests that NVP concentrations may be sufficient to provide protection against HIV transmission for the breast-feeding infant. We iii then investigated amniotic fluid concentrations of three ARV agents highly prescribed during pregnancy. Our results show that lamivudine (3TC) and zidovudine (ZDV) concentrations in the amniotic fluid exceed those in maternal plasma leading to significant fetal exposure. In contrast, the low nelfinavir (NFV) concentrations observed are unlikely to provide fetal protection against HIV transmission and the sub-therapeutic levels may lead to the development of resistance mutations. Last, we examined ARV quantitation in the female genital tract using a novel cervicovaginal secretion collection methodology. Our methods were able to quantitate drugs from three ARV classes and will be applied to future studies examining the differential penetration of ARVs into the female genital tract. This work can subsequently be used when selecting optimal treatment regimens for prophylaxis of HIV transmission, to decrease HIV RNA in sanctuary sites, and to prevent the development of resistance mutations due to sub-optimal ARV exposure
Cell-free (RNA) and cell-associated (DNA) HIV-1 and postnatal transmission through breastfeeding
<p>Introduction - Transmission through breastfeeding remains important for mother-to-child transmission (MTCT) in resource-limited settings. We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum.</p>
<p>Materials and Methods - Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission.</p>
<p>Results - There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33–4.59) vs. aHR 1.52 (95% CI, 1.17–1.96), respectively]. At 6 months, cell-free and cell-associated levels (per ml) in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-free than cell-associated levels [aHR 2.53 (95% CI 1.64–3.92) vs. 1.73 (95% CI 0.94–3.19), respectively].</p>
<p>Conclusions - The findings suggest that cell-associated virus level (per ml) is more important for early postpartum HIV-1 transmission (at 6 weeks) than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal for 2015 of eliminating vertical transmission. More studies would further knowledge on mechanisms of HIV-1 transmission and help develop more effective drugs during lactation.</p>
Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen
We have constructed maximally-localized Wannier functions for prototype
structures of solid molecular hydrogen under pressure, starting from LDA and
tight-binding Bloch wave functions. Each occupied Wannier function can be
associated with two paired protons, defining a ``Wannier molecule''. The sum of
the dipole moments of these ``molecules'' always gives the correct macroscopic
polarization, even under strong compression, when the overlap between nearby
Wannier functions becomes significant. We find that at megabar pressures the
contributions to the dipoles arising from the overlapping tails of the Wannier
functions is very large. The strong vibron infrared absorption experimentally
observed in phase III, above ~ 150 GPa, is analyzed in terms of the
vibron-induced fluctuations of the Wannier dipoles. We decompose these
fluctuations into ``static'' and ``dynamical'' contributions, and find that at
such high densities the latter term, which increases much more steeply with
pressure, is dominant.Comment: 17 pages, two-column style with 14 postscript figures embedded. Uses
REVTEX and epsf macro
Consequences of local gauge symmetry in empirical tight-binding theory
A method for incorporating electromagnetic fields into empirical
tight-binding theory is derived from the principle of local gauge symmetry.
Gauge invariance is shown to be incompatible with empirical tight-binding
theory unless a representation exists in which the coordinate operator is
diagonal. The present approach takes this basis as fundamental and uses group
theory to construct symmetrized linear combinations of discrete coordinate
eigenkets. This produces orthogonal atomic-like "orbitals" that may be used as
a tight-binding basis. The coordinate matrix in the latter basis includes
intra-atomic matrix elements between different orbitals on the same atom.
Lattice gauge theory is then used to define discrete electromagnetic fields and
their interaction with electrons. Local gauge symmetry is shown to impose
strong restrictions limiting the range of the Hamiltonian in the coordinate
basis. The theory is applied to the semiconductors Ge and Si, for which it is
shown that a basis of 15 orbitals per atom provides a satisfactory description
of the valence bands and the lowest conduction bands. Calculations of the
dielectric function demonstrate that this model yields an accurate joint
density of states, but underestimates the oscillator strength by about 20% in
comparison to a nonlocal empirical pseudopotential calculation.Comment: 23 pages, 7 figures, RevTeX4; submitted to Phys. Rev.
The physics of dynamical atomic charges: the case of ABO3 compounds
Based on recent first-principles computations in perovskite compounds,
especially BaTiO3, we examine the significance of the Born effective charge
concept and contrast it with other atomic charge definitions, either static
(Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static
and dynamical charges are not driven by the same underlying parameters. A
unified treatment of dynamical charges in periodic solids and large clusters is
proposed. The origin of the difference between static and dynamical charges is
discussed in terms of local polarizability and delocalized transfers of charge:
local models succeed in reproducing anomalous effective charges thanks to large
atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor
the physical picture based upon transfer of charges. Various results concerning
barium and strontium titanates are presented. The origin of anomalous Born
effective charges is discussed thanks to a band-by-band decomposition which
allows to identify the displacement of the Wannier center of separated bands
induced by an atomic displacement. The sensitivity of the Born effective
charges to microscopic and macroscopic strains is examined. Finally, we
estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe
- …
