293 research outputs found
Stability analysis for laminar flow control, part 1
The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed
Solitary Waves Bifurcated from Bloch Band Edges in Two-dimensional Periodic Media
Solitary waves bifurcated from edges of Bloch bands in two-dimensional
periodic media are determined both analytically and numerically in the context
of a two-dimensional nonlinear Schr\"odinger equation with a periodic
potential. Using multi-scale perturbation methods, envelope equations of
solitary waves near Bloch bands are analytically derived. These envelope
equations reveal that solitary waves can bifurcate from edges of Bloch bands
under either focusing or defocusing nonlinearity, depending on the signs of
second-order dispersion coefficients at the edge points. Interestingly, at edge
points with two linearly independent Bloch modes, the envelope equations lead
to a host of solitary wave structures including reduced-symmetry solitons,
dipole-array solitons, vortex-cell solitons, and so on -- many of which have
never been reported before. It is also shown analytically that the centers of
envelope solutions can only be positioned at four possible locations at or
between potential peaks. Numerically, families of these solitary waves are
directly computed both near and far away from band edges. Near the band edges,
the numerical solutions spread over many lattice sites, and they fully agree
with the analytical solutions obtained from envelope equations. Far away from
the band edges, solitary waves are strongly localized with intensity and phase
profiles characteristic of individual families.Comment: 23 pages, 15 figures. To appear in Phys. Rev.
Weakly Turbulent MHD Waves in Compressible Low-Beta Plasmas
In this Letter, weak turbulence theory is used to investigate interactions
among Alfven waves and fast and slow magnetosonic waves in collisionless
low-beta plasmas. The wave kinetic equations are derived from the equations of
magnetohydrodynamics, and extra terms are then added to model collisionless
damping. These equations are used to provide a quantitative description of a
variety of nonlinear processes, including "parallel" and "perpendicular" energy
cascade, energy transfer between wave types, "phase mixing," and the generation
of back-scattered Alfven waves.Comment: Accepted, Physical Review Letter
Finite time collapse of N classical fields described by coupled nonlinear Schrodinger equations
We prove the finite-time collapse of a system of N classical fields, which
are described by N coupled nonlinear Schrodinger equations. We derive the
conditions under which all of the fields experiences this finite-time collapse.
Finally, for two-dimensional systems, we derive constraints on the number of
particles associated with each field that are necessary to prevent collapse.Comment: v2: corrected typo on equation
Two-component Analogue of Two-dimensional Long Wave-Short Wave Resonance Interaction Equations: A Derivation and Solutions
The two-component analogue of two-dimensional long wave-short wave resonance
interaction equations is derived in a physical setting. Wronskian solutions of
the integrable two-component analogue of two-dimensional long wave-short wave
resonance interaction equations are presented.Comment: 16 pages, 9 figures, revised version; The pdf file including all
figures: http://www.math.utpa.edu/kmaruno/yajima.pd
Statistical Description of Acoustic Turbulence
We develop expressions for the nonlinear wave damping and frequency
correction of a field of random, spatially homogeneous, acoustic waves. The
implications for the nature of the equilibrium spectral energy distribution are
discussedComment: PRE, Submitted. REVTeX, 16 pages, 3 figures (not included) PS Source
of the paper with figures avalable at
http://lvov.weizmann.ac.il/onlinelist.htm
The algebraic and Hamiltonian structure of the dispersionless Benney and Toda hierarchies
The algebraic and Hamiltonian structures of the multicomponent dispersionless
Benney and Toda hierarchies are studied. This is achieved by using a modified
set of variables for which there is a symmetry between the basic fields. This
symmetry enables formulae normally given implicitly in terms of residues, such
as conserved charges and fluxes, to be calculated explicitly. As a corollary of
these results the equivalence of the Benney and Toda hierarchies is
established. It is further shown that such quantities may be expressed in terms
of generalized hypergeometric functions, the simplest example involving
Legendre polynomials. These results are then extended to systems derived from a
rational Lax function and a logarithmic function. Various reductions are also
studied.Comment: 29 pages, LaTe
Hydrodynamic chains and a classification of their Poisson brackets
Necessary and sufficient conditions for an existence of the Poisson brackets
significantly simplify in the Liouville coordinates. The corresponding
equations can be integrated. Thus, a description of local Hamiltonian
structures is a first step in a description of integrable hydrodynamic chains.
The concept of Poisson bracket is introduced. Several new Poisson brackets
are presented
Vlasov moment flows and geodesics on the Jacobi group
By using the moment algebra of the Vlasov kinetic equation, we characterize
the integrable Bloch-Iserles system on symmetric matrices
(arXiv:math-ph/0512093) as a geodesic flow on the Jacobi group. We analyze the
corresponding Lie-Poisson structure by presenting a momentum map, which both
untangles the bracket structure and produces particle-type solutions that are
inherited from the Vlasov-like interpretation. Moreover, we show how the Vlasov
moments associated to Bloch-Iserles dynamics correspond to particular subgroup
inclusions into a group central extension (first discovered in
arXiv:math/0410100), which in turn underlies Vlasov kinetic theory. In the most
general case of Bloch-Iserles dynamics, a generalization of the Jacobi group
also emerges naturally.Comment: 45 page
Gurevich-Zybin system
We present three different linearizable extensions of the Gurevich-Zybin
system. Their general solutions are found by reciprocal transformations. In
this paper we rewrite the Gurevich-Zybin system as a Monge-Ampere equation. By
application of reciprocal transformation this equation is linearized.
Infinitely many local Hamiltonian structures, local Lagrangian representations,
local conservation laws and local commuting flows are found. Moreover, all
commuting flows can be written as Monge-Ampere equations similar to the
Gurevich-Zybin system. The Gurevich-Zybin system describes the formation of a
large scale structures in the Universe. The second harmonic wave generation is
known in nonlinear optics. In this paper we prove that the Gurevich-Zybin
system is equivalent to a degenerate case of the second harmonic generation.
Thus, the Gurevich-Zybin system is recognized as a degenerate first negative
flow of two-component Harry Dym hierarchy up to two Miura type transformations.
A reciprocal transformation between the Gurevich-Zybin system and degenerate
case of the second harmonic generation system is found. A new solution for the
second harmonic generation is presented in implicit form.Comment: Corrected typos and misprint
- …
