117 research outputs found

    Central attention and visual-spatial attention : Electrophysiological investigations of early psychological refractory period multitasking interference

    Get PDF
    Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

    Electrophysiological correlates of motor sequence learning

    Full text link
    BACKGROUND: The Error-related negativity (ERN) is a component of the event-related brain potentials elicited by error commission. The ERN is thought to reflect cognitive control processes aiming to improve performance. As previous studies showed a modulation of the ERN amplitude throughout the execution of a learning task, this study aims to follow the ERN amplitude changes from early to late learning blocks in relation with concomitant motor sequence learning using a serial reaction time (SRT) task. Twenty-two healthy participants completed a SRT task during which continuous EEG activity was recorded. The SRT task consists of series of stimulus-response pairs and involves motor learning of a repeating sequence. Learning was computed as the difference in mean response time between the last sequence block and the last random blocks that immediately follows it (sequence-specific learning). Event-related potentials were analysed to measure ERN amplitude elicited by error commission. RESULTS: Mean ERN amplitude difference between the first four learning blocks and the last four learning blocks of the SRT task correlated significantly with motor sequence learning as well as with overall response time improvement, such that those participants whose ERN amplitude most increased through learning blocks were also those who exhibited most SRT task improvements. In contrast, neither sequence-specific learning nor overall response time improvement across learning blocks were found to be related to averaged ERN amplitude from all learning blocks. CONCLUSION: Findings from the present study suggest that the ERN amplitude changes from early to late learning blocks occurring over the course of the SRT task, as opposed to the averaged ERN amplitude from all learning blocks, is more closely associated with learning of a motor sequence. These findings propose an improved electrophysiological marker to index change in cognitive control efficiency during motor sequence learning

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams

    Express Attentional Re-Engagement but Delayed Entry into Consciousness Following Invalid Spatial Cues in Visual Search

    Get PDF
    Background: In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects. Methodology/Principal Findings: Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasiinstantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect. Conclusions/Significance: Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by th

    Self-Assembly of Disorazole C1 through a One-Pot Alkyne Metathesis Homodimerization Strategy

    Get PDF
    Alkyne metathesis is increasingly explored as a reliable method to close macrocyclic rings, but there are no prior examples of an alkyne-metathesis-based homodimerization approach to natural products. In this approach to the cytotoxic C(2)-symmetric marine-derived bis(lactone) disorazole C(1), a highly convergent, modular strategy is employed featuring cyclization through an ambitious one-pot alkyne cross-metathesis/ring-closing metathesis self-assembly process
    corecore