559 research outputs found

    AMPK Activation by A-769662 Controls IL-6 Expression in Inflammatory Arthritis

    Get PDF
    International audienceAMP-activated protein kinase (AMPK) is a serine/threonine protein kinase critically involved in the regulation of cellular energy homeostasis. It is a central regulator of both lipid and glucose metabolism. Many studies have suggested that AMPK activation exert significant anti-inflammatory and immunosuppressive effects. In this study, we assessed whether targeted activation of AMPK inhibits inflammatory arthritis in vivo.METHODS:We tested the effect of A-769662, a specific AMPK agonist (60mg/kg/bid) in mouse models of antigen-induced arthritis (AIA) and passive K/BxN serum-induced arthritis. The passive K/BxN serum-induced arthritis model was also applied to AMPKα1-deficient mice. Joints were harvested and subjected to histological analysis. IL-6 expression was measured in both joint tissues and sera by ELISA. The effect of A-769662 on bone marrow derived macrophage (BMDM) response to stimulation with TLR2 and TLR4 agonists was tested in vitro.RESULTS:AMPK activation by A-769662 reduced inflammatory infiltration and joint damage in both mouse models. IL-6 expression in serum and arthritic joints was significantly decreased in A-769662-treated mice. AMPKα1 deficient mice mildly elicited an increase of clinical arthritis. IL-6 expression at both mRNA and protein levels, phosphorylation of p65 NF-κB and MAPK phosphorylation were inhibited by A-769662 in BMDMs stimulated with either TLR2 or TLR4 agonists.CONCLUSIONS:AMPK activation by specific AMPK agonist A-769662 suppressed inflammatory arthritis in mice as well as IL-6 expression in serum and arthritic joints. These data suggest that targeted activation of AMPK has a potential to be an effective therapeutic strategy for IL-6 dependent inflammatory arthritis

    Antagonistic control of muscle cell size by AMPK and mTORC1.

    Get PDF
    7 pages (2640-2646)International audienceNutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues

    Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the alpha1 or the alpha2 isoform of the catalytic domain of AMPK.

    Get PDF
    International audienceBACKGROUND: The purpose of this study was to determine whether AMPK influences the survival of primary cultures of mouse proximal tubular (MPT) cells subjected to metabolic stress. Previous studies, using an immortalized MPT cell line, suggest that AMPK is activated during metabolic stress, and ameliorates stress-induced apoptosis of these cells. METHODS: Primary MPT cells were cultured from AMPK knockout (KO) mice lacking either the alpha1 or the alpha2 isoform of the catalytic domain of AMPK. MPT cells were subjected to ATP depletion using antimycin A. RESULTS: Surprisingly, there was no difference in the amount of death induced by metabolic stress of MPT cells from either type of AMPK KO mice compared to its WT control. Moreover, inhibition of the activity of the alpha1 isoform in primary MPT cells from alpha2-/- mice (pharmacologically, via compound C) or inhibition of the alpha2 isoform in primary MPT cells from alpha1-/- mice (molecularly, via knockdown) both decreased cell viability equivalently in response to metabolic stress. The explanation for this unexpected result appears to be an adaptive increase in expression of the non-deleted alphaisoform. As a consequence, total As a consequence-domain expression (i.e. alpha1 + alpha2), is comparable in kidney cortex and in cultured MPT cells derived from either type of KO mouse versus its WT control. Importantly, each alphaisoform appears able to compensate fully for the absence of the other, with respect to both the phosphorylation of downstream targets of AMPK and the amelioration of stress-induced cell death. CONCLUSIONS: These findings not only confirm the importance of AMPK as a pro-survival kinase in MPT cells during metabolic stress, but also show, for the first time, that each of the two alpha-isoforms can substitute for the other in MPT cells from AMPK KO mice with regard to amelioration of stress-induced loss of cell viability

    AMPK Signaling Involvement for the Repression of the IL-1β-Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs

    Get PDF
    International audienceSecretory Phospholipase A2 of type IIA (sPLA2 IIA) plays a crucial role in the production of lipid mediators by amplifying the neointimal inflammatory context of the vascular smooth muscle cells (VSMCs), especially during atherogenesis. Phenformin, a biguanide family member, by its anti-inflammatory properties presents potential for promoting beneficial effects upon vascular cells, however its impact upon the IL-1β-induced sPLA2 gene expression has not been deeply investigated so far. The present study was designed to determine the relationship between phenformin coupling AMP-activated protein kinase (AMPK) function and the molecular mechanism by which the sPLA2 IIA expression was modulated in VSMCs. Here we find that 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleotide (AICAR) treatment strongly repressed IL-1β-induced sPLA2 expression at least at the transcriptional level. Our study reveals that phenformin elicited a dose-dependent inhibition of the sPLA2 IIA expression and transient overexpression experiments of constitutively active AMPK demonstrate clearly that AMPK signaling is involved in the transcriptional inhibition of sPLA2-IIA gene expression. Furthermore, although the expression of the transcriptional repressor B-cell lymphoma-6 protein (BCL-6) was markedly enhanced by phenformin and AICAR, the repression of sPLA2 gene occurs through a mechanism independent of BCL-6 DNA binding site. In addition we show that activation of AMPK limits IL-1β-induced NF-κB pathway activation. Our results indicate that BCL-6, once activated by AMPK, functions as a competitor of the IL-1β induced NF-κB transcription complex. Our findings provide insights on a new anti-inflammatory pathway linking phenformin, AMPK and molecular control of sPLA2 IIA gene expression in VSMCs

    Phenformin, but not metformin, delays development of T-cell acute lymphoblastic leukemia/lymphoma via cell-autonomous AMPK activation

    Get PDF
    Summary: AMPK acts downstream of the tumor suppressor LKB1, yet its role in cancer has been controversial. AMPK is activated by biguanides, such as metformin and phenformin, and metformin use in diabetics has been associated with reduced cancer risk. However, whether this is mediated by cell-autonomous AMPK activation within tumor progenitor cells has been unclear. We report that T-cell-specific loss of AMPK-α1 caused accelerated growth of T cell acute lymphoblastic leukemia/lymphoma (T-ALL) induced by PTEN loss in thymic T cell progenitors. Oral administration of phenformin, but not metformin, delayed onset and growth of lymphomas, but only when T cells expressed AMPK-α1. This differential effect of biguanides correlated with detection of phenformin, but not metformin, in thymus. Phenformin also enhanced apoptosis in T-ALL cells both in vivo and in vitro. Thus, AMPK-α1 can be a cell-autonomous tumor suppressor in the context of T-ALL, and phenformin may have potential for the prevention of some cancers. : The roles of AMPK in cancer and of biguanides in its prevention or treatment are controversial. Vara-Ciruelos et al. now report that genetic loss of AMPK in T cells accelerates T cell acute lymphoblastic leukemia/lymphoma, whereas the biguanide phenformin, but not metformin, protects against its development in a cell-autonomous, AMPK-dependent manner. Keywords: AMP-activated protein kinase, AMPK, biguanides, metformin, phenformin, T-ALL, T cell acute lymphoblastic leukemia/lymphom

    Loss of AMP-activated protein kinase alpha 2 subunit in mouse beta-cells impairs glucose-stimulated insulin secretion and inhibits their sensitivity to hypoglycaemia

    Get PDF
    AMPK (AMP-activated protein kinase) signalling plays a key role in whole-body energy homoeostasis, although its precise role in pancreatic β-cell function remains unclear. In the present stusy, we therefore investigated whether AMPK plays a critical function in β-cell glucose sensing and is required for the maintenance of normal glucose homoeostasis. Mice lacking AMPKα2 in β-cells and a population of hypothalamic neurons (RIPCreα2KO mice) and RIPCreα2KO mice lacking AMPKα1 (α1KORIPCreα2KO) globally were assessed for whole-body glucose homoeostasis and insulin secretion. Isolated pancreatic islets from these mice were assessed for glucose-stimulated insulin secretion and gene expression changes. Cultured β-cells were examined electrophysiologically for their electrical responsiveness to hypoglycaemia. RIPCreα2KO mice exhibited glucose intolerance and impaired GSIS (glucose-stimulated insulin secretion) and this was exacerbated in α1KORIPCreα2KO mice. Reduced glucose concentrations failed to completely suppress insulin secretion in islets from RIPCreα2KO and α1KORIPCreα2KO mice, and conversely GSIS was impaired. β-Cells lacking AMPKα2 or expressing a kinase-dead AMPKα2 failed to hyperpolarize in response to low glucose, although KATP (ATP-sensitive potassium) channel function was intact. We could detect no alteration of GLUT2 (glucose transporter 2), glucose uptake or glucokinase that could explain this glucose insensitivity. UCP2 (uncoupling protein 2) expression was reduced in RIPCreα2KO islets and the UCP2 inhibitor genipin suppressed low-glucose-mediated wild-type mouse β-cell hyperpolarization, mimicking the effect of AMPKα2 loss. These results show that AMPKα2 activity is necessary to maintain normal pancreatic β-cell glucose sensing, possibly by maintaining high β-cell levels of UCP2

    Therapy: Metformin takes a new route to clinical efficacy.

    Get PDF
    International audienceMetformin is currently the first-line treatment option for patients with type 2 diabetes mellitus, yet its mechanism of action remains uncertain. A new study reveals the important role for the activation of a duodenal AMPK-dependent neuronal pathway in the acute antihyperglycaemic effect of metformin and the inhibition of hepatic glucose production

    The LKB1-AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria

    Get PDF
    International audienceHypoxic pulmonary vasoconstriction (HPV), which aids ventilation-perfusion matching in the lungs, is triggered by mechanisms intrinsic to pulmonary arterial smooth muscles. The unique sensitivity of these muscles to hypoxia is conferred by mitochondrial cytochrome c oxidase subunit 4 isoform 2, the inhibition of which has been proposed to trigger HPV through increased generation of mitochondrial reactive oxygen species. Contrary to this model, we have shown that the LKB1-AMPK-α1 signaling pathway is critical to HPV. Spectral Doppler ultrasound revealed that deletion of the AMPK-α1 catalytic subunit blocked HPV in mice during mild (8% O2) and severe (5% O2) hypoxia, whereas AMPK-α2 deletion attenuated HPV only during severe hypoxia. By contrast, neither of these genetic manipulations affected serotonin-induced reductions in pulmonary vascular flow. HPV was also attenuated by reduced expression of LKB1, a kinase that activates AMPK during energy stress, but not after deletion of CaMKK2, a kinase that activates AMPK in response to increases in cytoplasmic Ca2+ Fluorescence imaging of acutely isolated pulmonary arterial myocytes revealed that AMPK-α1 or AMPK-α2 deletion did not affect mitochondrial membrane potential during normoxia or hypoxia. However, deletion of AMPK-α1, but not of AMPK-α2, blocked hypoxia from inhibiting KV1.5, the classical "oxygen-sensing" K+ channel in pulmonary arterial myocytes. We conclude that LKB1-AMPK-α1 signaling pathways downstream of mitochondria are critical for the induction of HPV, in a manner also supported by AMPK-α2 during severe hypoxia

    Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells

    Get PDF
    The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK
    corecore