91 research outputs found

    Nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    Get PDF
    A system of two coupled integro-differential equations is derived and solved for the non-linear evolution of two waves excited by the resonant interaction with fast ions just above the linear instability threshold. The effects of a resonant particle source and classical relaxation processes represented by the Krook, diffusion, and dynamical friction collision operators are included in the model, which exhibits different nonlinear evolution regimes, mainly depending on the type of relaxation process that restores the unstable distribution function of fast ions. When the Krook collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and saturation. However, when the dynamical friction dominates, the wave amplitude is in the explosive regime. In addition, it is found that the finite separation in the phase velocities of the two modes weakens the interaction strength between the modes

    Stokes-vector evolution in a weakly anisotropic inhomogeneous medium

    Full text link
    Equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of quasi-isotropic approximation of the geometrical optics method, which provides consequent asymptotic solution of Maxwell equations. Our equation generalizes previous results, obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable to describe normal modes conversion in the inhomogeneous media. Remarkably, evolution of the Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation for spin precession in ferromegnetic systems. General theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.Comment: 16 pages, 3 figures, to appear in J. Opt. Soc. Am.

    Gradient Optics of subwavelength nanofilms

    Get PDF
    Propagation and tunneling of light through subwavelength photonic barriers, formed by dielectric layers with continuous spatial variations of dielectric susceptibility across the film are considered. Effects of giant heterogeneity-induced non-local dispersion, both normal and anomalous, are examined by means of a series of exact analytical solutions of Maxwell equations for gradient media. Generalized Fresnel formulae, visualizing a profound influence of gradient and curvature of dielectric susceptibility profiles on reflectance/transmittance of periodical photonic heterostructures are presented. Depending on the cutoff frequency of the barrier, governed by technologically managed spatial profile of its refractive index, propagation or tunneling of light through these barriers are examined. Nonattenuative transfer of EM energy by evanescent waves, tunneling through dielectric gradient barriers, characterized by real values of refractive index, decreasing in the depth of medium, is shown. Scaling of the obtained results for different spectral ranges of visible, IR and THz waves is illustrated. Potential of gradient optical structures for design of miniaturized filters, polarizers and frequency-selective interfaces of subwavelength thickness is considered

    Development and application of a relative displacement sensor for structural health monitoring of composite bridges

    Get PDF
    This paper proposes a relative displacement sensor developed to measure directly the relative slip between slab and girder in composite bridges for assessing the health condition of shear connections. The structure, design principle, features, and calibration of the developed relative displacement sensor are presented. The design of the sensor ensures that there are no voltage outputs for the tension, compression, bending, and torsion effects, but only for the relative displacement between the two connecting pads of the sensor. The accuracy of the developed sensor in measuring the relative displacement response and using it for monitoring the conditions of shear connectors was tested on a composite bridge model in the laboratory. Shear connection condition was monitored under ambient vibrations, then static load tests were conducted to introduce cracks into the composite bridge. Both the vertical deflections and relative displacements were used for the crack detection. Experimental studies demonstrate that the developed sensor is very sensitive to the relative displacement and has a decent performance for the structural health monitoring of composite bridges

    Gaussian Beam Diffraction and Self-Focusing in Weakly Anisotropic and Dissipative Nonlinear Plasma

    No full text
    The paper presents a simple and effective method to calculate polarization and diffraction of the Gaussian beam in nonlinear and weakly dissipative plasma. The presented approach is a combination of quasi-isotropic approximation of geometric optics with complex geometrical optics. Quasi-isotropic approximation describes the evolution of polarization vector reducing the Maxwell equations to coupled ordinary differential equations of the first order for the transverse components of the electromagnetic field. Complex geometrical optics describes the Gaussian beam diffraction and self-focusing and deals with ordinary differential equations for Gaussian beam width, wave front curvature, and amplitude evolution. As a result, the quasi-isotropic approximation + complex geometrical optics combination reduces the problem of diffraction and polarization evolution of an electromagnetic beam to the solution of the ordinary differential equations, which enable to prepare fast and effective numerical algorithms. Using combined complex geometrical optics/quasi-isotropic approximation for weakly anisotropic plasma, we assume that nonlinearity of anisotropy tensor is small and we restrict ourselves to considering only isotropic nonlinearity. The quasi-isotropic approximation effectively describes the evolution of microwave and IR electromagnetic beams in polarimetric and interferometric measurements in thermonuclear reactors and the complex geometrical optics method can be applied for modeling of electron cyclotron absorption and current drive in tokamaks

    Exhibition Review

    Full text link

    Gaussian Beam Diffraction and Self-Focusing in Weakly Anisotropic and Dissipative Nonlinear Plasma

    No full text
    The paper presents a simple and effective method to calculate polarization and diffraction of the Gaussian beam in nonlinear and weakly dissipative plasma. The presented approach is a combination of quasi-isotropic approximation of geometric optics with complex geometrical optics. Quasi-isotropic approximation describes the evolution of polarization vector reducing the Maxwell equations to coupled ordinary differential equations of the first order for the transverse components of the electromagnetic field. Complex geometrical optics describes the Gaussian beam diffraction and self-focusing and deals with ordinary differential equations for Gaussian beam width, wave front curvature, and amplitude evolution. As a result, the quasi-isotropic approximation + complex geometrical optics combination reduces the problem of diffraction and polarization evolution of an electromagnetic beam to the solution of the ordinary differential equations, which enable to prepare fast and effective numerical algorithms. Using combined complex geometrical optics/quasi-isotropic approximation for weakly anisotropic plasma, we assume that nonlinearity of anisotropy tensor is small and we restrict ourselves to considering only isotropic nonlinearity. The quasi-isotropic approximation effectively describes the evolution of microwave and IR electromagnetic beams in polarimetric and interferometric measurements in thermonuclear reactors and the complex geometrical optics method can be applied for modeling of electron cyclotron absorption and current drive in tokamaks

    Complex geometrical optics and nonlinear absorption/gain effects

    Full text link
    corecore