1,457 research outputs found
Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway
In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility
Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific
Natural Environment Research Council (NERC) (NE/E01559X/1)
Influence of modern coal-fired power technologies on fly ash properties and its use in concrete
The work reported in this paper investigated the properties and use of fly ash (FA) produced from technologies developed to reduce the environmental impact and improve the efficiency of the coal-fired power generation process. These include nitrogen oxides (NO x) reduction, co-combustion, supercritical steam technology and oxy-fuel combustion. The nine FA samples examined from these technologies were characterised physically, chemically and in terms of their reactivity. Tests were also carried out to determine the consistence (slump) and compressive strength of FA concretes. Comparisons were made with a selection of reference FAs, the requirements of BS EN 450-1 and reported FA studies from the 1980s and 1990s. The results indicated that, for some technologies, the FA tended to be coarser and of higher loss on ignition (co-combustion and in-combustion NO x reduction) while, for others lower carbon contents were found (supercritical steam) or there was little obvious effect. FA chemistry was slightly affected in some cases, but mainly as expected for the coal being used. There was general agreement between water requirement and activity index with FA fineness for the materials tested. For the FA concretes, similar effects were noted in terms of the dosage of superplasticising admixture needed for a target slump and compressive strength. The behaviour of the materials from the new technologies was found to be similar to that reported in earlier studies on FA and suggests suitability for their use in concrete construction. </p
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine
Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base
Identifying practical indicators of biodiversity for stand-level management of plantation forests
Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2
The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in
apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte
death called eryptosis is characterized by cell shrinkage and cell membrane
scrambling leading to phosphatidylserine (PS) externalization. Here, we
explored whether MSK1/2 participates in the regulation of eryptosis. To this
end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−)
and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin
concentration and mean erythrocyte volume were similar in both msk−/− and
msk+/+ mice, but reticulocyte count was significantly increased in msk−/−
mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+
erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo
such as hyperosmotic shock or energy depletion to significantly higher levels
in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following
hyperosmotic shock and energy depletion, as well as hemolysis following
decrease of extracellular osmolarity was more pronounced in msk−/−
erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled
erythrocytes from circulating blood was faster in msk−/− mice. The spleens
from msk−/− mice contained a significantly greater number of PS-exposing
erythrocytes than spleens from msk+/+ mice. The present observations point to
accelerated eryptosis and subsequent clearance of erythrocytes leading to
enhanced erythrocyte turnover in MSK1/2-deficient mice
Assessing the ecological risk posed by a recently established invasive alien predator: Harmonia axyridis as a case study
Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation
Epidemiology and heritability of Major Depressive Disorder, stratified by age of onset, sex, and illness course in Generation Scotland:Scottish Family Health Study (GS:SFHS)
The heritability of Major Depressive Disorder (MDD) has been estimated at 37% based largely on twin studies that rely on contested assumptions. More recently, the heritability of MDD has been estimated on large populations from registries such as the Swedish, Finnish, and Chinese cohorts. Family-based designs utilise a number of different relationships and provide an alternative means of estimating heritability. Generation Scotland: Scottish Family Health Study (GS:SFHS) is a large (n = 20,198), family-based population study designed to identify the genetic determinants of common diseases, including Major Depressive Disorder. Two thousand seven hundred and six individuals were SCID diagnosed with MDD, 13.5% of the cohort, from which we inferred a population prevalence of 12.2% (95% credible interval: 11.4% to 13.1%). Increased risk of MDD was associated with being female, unemployed due to a disability, current smokers, former drinkers, and living in areas of greater social deprivation. The heritability of MDD in GS:SFHS was between 28% and 44%, estimated from a pedigree model. The genetic correlation of MDD between sexes, age of onset, and illness course were examined and showed strong genetic correlations. The genetic correlation between males and females with MDD was 0.75 (0.43 to 0.99); between earlier (≤ age 40) and later (> age 40) onset was 0.85 (0.66 to 0.98); and between single and recurrent episodic illness course was 0.87 (0.72 to 0.98). We found that the heritability of recurrent MDD illness course was significantly greater than the heritability of single MDD illness course. The study confirms a moderate genetic contribution to depression, with a small contribution of the common family environment (variance proportion = 0.07, CI: 0.01 to 0.15), and supports the relationship of MDD with previously identified risk factors. This study did not find robust support for genetic differences in MDD due to sex, age of onset, or illness course. However, we found an intriguing difference in heritability between recurrent and single MDD illness course. These findings establish GS:SFHS as a valuable cohort for the genetic investigation of MDD
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
- …
