109 research outputs found
Investigating the spatial risk distribution of West Nile virus disease in birds and humans in southern Ontario from 2002 to 2005
<p>Abstract</p> <p>Background</p> <p>The West Nile virus (WNv) became a veterinary public health concern in southern Ontario in 2001 and has continued to threaten public health. Wild bird mortality has been shown to be an indicator for tracking the geographic distribution of the WNv. The purpose of this study was to investigate the latent risk distribution of WNv disease among dead birds and humans in southern Ontario and to compare the spatial risk patterns for the period 2002–2005. The relationship between the mortality fraction in birds and incidence rate in humans was also investigated.</p> <p>Methods</p> <p>Choropleth maps were created to investigate the spatial variation in bird and human WNv risk for the public health units of southern Ontario. The data were smoothed by empirical Bayesian estimation before being mapped. Isopleth risk maps for both the bird and human data were created to identify high risk areas and to investigate the potential relationship between the WNv mortality fraction in birds and incidence rates in humans. This was carried out by the geostatistical prediction method of kriging. A Poisson regression analysis was used to model regional human WNv case counts as a function of the spatial coordinates in the east and north direction and the regional bird mortality fractions. The presence of disease clustering and the location of disease clusters were investigated by the spatial scan test.</p> <p>Results</p> <p>The isopleth risk maps exhibited high risk areas that were relatively constant from year to year. There was an overlap in the bird and human high risk areas, which occurred in the central-west and south-west areas of southern Ontario. The annual WNv cause-specific mortality fractions in birds for 2002 to 2005 were 31.9, 22.0, 19.2 and 25.2 positive birds per 100 birds tested, respectively. The annual human WNv incidence rates for 2002 to 2005 were 2.21, 0.76, 0.13 and 2.10 human cases per 100,000 population, respectively. The relative risk of human WNv disease was 0.72 times lower for a public health unit that was 100 km north of another public health unit. The relative risk of human WNv disease increased by the factor 1.44 with every 10 positive birds per 100 tested. The scan statistic detected disease cluster in the bird and human data. The human clusters were not significant, when the analysis was conditioned on the bird data.</p> <p>Conclusion</p> <p>The study indicates a significant relationship between the spatial pattern of WNv risk in humans and birds.</p
A multi-site study on walkability, data sharing and privacy perception using mobile sensing data gathered from the mk-sense platform
Walking is a fundamental part of a physically active lifestyle, it is one of everyday activities that positively impacts health and wellbeing. In this paper we describe the challenges and experiences of conducting a sensing campaign in the wild. We make use of mk-sense; a software platform to facilitate the deployment of collaborative sensing campaigns. We elaborate on two cross-cultural studies conducted in four different countries (Mexico, Turkey, Spain, and Switzerland) with a total of 77 participants. We present a detailed description of the data collected from one of the studies aimed at measuring walkability around three different university campuses. The analysis of the data shows that walkability can be assessed using information from the sensors in the smartphones and results from surveys answered by participants. In addition, we analyze issues about data sharing and privacy awareness
Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells
We examined the toxicity of methamphetamine and dopamine in CATH.a cells, which were derived from mouse dopamine-producing neural cells in the central nervous system. Use of the quantitative real-time polymerase chain reaction revealed that transcripts of the endoplasmic reticulum stress related gene (CHOP/Gadd153/ddit3) were considerably induced at 24–48 h after methamphetamine administration (but only under apoptotic conditions), whereas dopamine slightly induced CHOP/Gadd153/ddit3 transcripts at an early stage. We also found that dopamine and methamphetamine weakly induced transcripts for the glucose-regulated protein 78 gene (Grp78/Bip) at the early stage. Analysis by immunofluorescence microscopy demonstrated an increase of CHOP/Gadd153/ddit3 and Grp78/Bip proteins at 24 h after methamphetamine administration. Treatment of CATH.a cells with methamphetamine caused a re-distribution of dopamine inside the cells, which mimicked the presynaptic activity of neurons with cell bodies located in the ventral tegmental area or the substantia nigra. Thus, we have demonstrated the existence of endoplasmic reticulum stress in a model of presynaptic dopaminergic neurons for the first time. Together with the recent evidence suggesting the importance of presynaptic toxicity, our findings provide new insights into the mechanisms of dopamine toxicity, which might represent one of the most important mechanisms of methamphetamine toxicity and addiction
The plant Polycomb repressive complex 1 (PRC1) existed in the ancestor of seed plants and has a complex duplication history
Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression
<p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p
Patients’ Satisfaction with Lower-limb Prosthetic and Orthotic Devices and Service delivery in Sierra Leone and Malawi
Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules.
The Philadelphia (Ph) chromosome, resulting from the t(9;22) translocation, is characteristic of chronic myeloid leukemia (CML). As a result of this translocation, two novel chimeric genes are generated and the bcr/abl and abl/bcr fusion proteins expressed. The bcr/abl fusion mRNA is present in all CML patients, whereas the reciprocal abl/bcr fusion mRNA is detectable in about 80% of the Ph+ CML patients. These fusion proteins may undergo enzymatic degradation in the cytosol and give rise to MHC class I restricted peptide epitopes originating from the junctional regions of the translocation products, which thus may serve as novel tumor specific antigens. Previously, other groups have tested peptides corresponding to the junctional region of the bcr/abl protein for their binding capacity to HLA class I molecules and have identified a few candidate epitopes. Peptides originating from the abl/bcr fusion protein have on the other hand so far been neglected, for no apparent reason. We have now extended these studies to include also the reciprocal abl/bcr translocation product by testing a large panel of synthetic peptides corresponding to the junctional regions of both the abl/bcr and the bcr/abl fusion proteins for their ability to stabilize HLA class I molecules. We find that the abl/bcr translocation product may be an even more important source of CML specific peptide antigens and together the junctional sequences of both these proteins contain peptide sequences which bind efficiently to a number of HLA molecules (HLA-A1, -A2, -A3, -A11, -B7, -B27, -B35) and thus may serve as candidate CML specific tumor antigens
- …
