693 research outputs found
Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex
The plant hormone auxin can regulate gene expression by destabilizing members of the Aux/IAA family of transcriptional repressors. Auxin-induced Aux/IAA degradation requires the protein-ubiquitin ligase SCFTIR1, with auxin acting to enhance the interaction between the Aux/IAAs and SCIFTIR1. SKP1, Cullin, and an F-box-containing protein (SCF)-mediated degradation is an important component of many eukaryotic signaling pathways. In all known cases to date, the interaction between the targets and their cognate SCFs is regulated by signal-induced modification of the target. The mechanism by which auxin promotes the interaction between SCFTIR1 and Aux/IAAs is not understood, but current hypotheses propose auxin-induced phosphorylation, hydroxylation, or proline isomerization of the Aux/IAAs. We found no evidence to support these hypotheses or indeed that auxin induces any stable modification of Aux/IAAs to increase their affinity for SCFTIR1. Instead, we present data suggesting that auxin promotes the SCIFTIR1-Aux/IAA interaction by affecting the SCIF component, TIR1, or proteins tightly associated with it
Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation
Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves
The dynamic patterning of the plant hormone auxin and its efflux facilitator
the PIN protein are the key regulator for the spatial and temporal organization
of plant development. In particular auxin induces the polar localization of its
own efflux facilitator. Due to this positive feedback auxin flow is directed
and patterns of auxin and PIN arise. During the earliest stage of vein
initiation in leaves auxin accumulates in a single cell in a rim of epidermal
cells from which it flows into the ground meristem tissue of the leaf blade.
There the localized auxin supply yields the successive polarization of PIN
distribution along a strand of cells. We model the auxin and PIN dynamics
within cells with a minimal canalization model. Solving the model analytically
we uncover an excitable polarization front that triggers a polar distribution
of PIN proteins in cells. As polarization fronts may extend to opposing
directions from their initiation site we suggest a possible resolution to the
puzzling occurrence of bipolar cells, such we offer an explanation for the
development of closed, looped veins. Employing non-linear analysis we identify
the role of the contributing microscopic processes during polarization.
Furthermore, we deduce quantitative predictions on polarization fronts
establishing a route to determine the up to now largely unknown kinetic rates
of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for
publication in Eur. Phys. J.
The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane.
Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics
Leaf venation, as a resistor, to optimize a switchable IR absorber
Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature’s vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber
Plant embryogenesis requires AUX/LAX-mediated auxin influx
The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS (ARF5)-dependent auxin signalling and auxin transport. This MONOPTEROS-dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling
RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis
Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation, however their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatio-temporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues
Multiscale modelling of auxin transport in the plant-root elongation zone
In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics
The Role of Auxin Transport in Plant Patterning Mechanisms
In plants, many patterning processes involve the phytohormone auxin, and controlling how it moves around plays a critical role in pattern formation
Estimation of protein diffusion parameters
Protein diffusion offers an essential and elegant mechanism for morphogen gradient formation. Morphogens are signalling molecules that emanate from a particular region of the cell and create a gradient which has an impact on most biological processes, cell signalling and embryonic development. Using a method that is based on Singular Spectrum Analysis, we estimate parameters introduced in the Synthesis Diffusion Degradation model which is a commonly applied model for a transcription factor known as Bicoid. Our findings, consistent with simulation results, indicate that the proposed method can be practically applied as an enhanced parameter estimation technique with reduced sensitivity to various levels of noise
- …
