18,655 research outputs found
Non-Resonant Effects in Implementation of Quantum Shor Algorithm
We simulate Shor's algorithm on an Ising spin quantum computer. The influence
of non-resonant effects is analyzed in detail. It is shown that our ``''-method successfully suppresses non-resonant effects even for relatively
large values of the Rabi frequency.Comment: 11 pages, 13 figure
Dynamical Stability and Quantum Chaos of Ions in a Linear Trap
The realization of a paradigm chaotic system, namely the harmonically driven
oscillator, in the quantum domain using cold trapped ions driven by lasers is
theoretically investigated. The simplest characteristics of regular and chaotic
dynamics are calculated. The possibilities of experimental realization are
discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev
Influence of qubit displacements on quantum logic operations in a silicon-based quantum computer with constant interaction
The errors caused by qubit displacements from their prescribed locations in
an ensemble of spin chains are estimated analytically and calculated
numerically for a quantum computer based on phosphorus donors in silicon. We
show that it is possible to polarize (initialize) the nuclear spins even with
displaced qubits by using Controlled NOT gates between the electron and nuclear
spins of the same phosphorus atom. However, a Controlled NOT gate between the
displaced electron spins is implemented with large error because of the
exponential dependence of exchange interaction constant on the distance between
the qubits. If quantum computation is implemented on an ensemble of many spin
chains, the errors can be small if the number of chains with displaced qubits
is small
Stability of the Ground State of a Harmonic Oscillator in a Monochromatic Wave
Classical and quantum dynamics of a harmonic oscillator in a monochromatic
wave is studied in the exact resonance and near resonance cases. This model
describes, in particular, a dynamics of a cold ion trapped in a linear ion trap
and interacting with two lasers fields with close frequencies. Analytically and
numerically a stability of the ``classical ground state'' (CGS) -- the vicinity
of the point () -- is analyzed. In the quantum case, the method for
studying a stability of the quantum ground state (QGS) is suggested, based on
the quasienergy representation. The dynamics depends on four parameters: the
detuning from the resonance, , where and
are, respectively, the wave and the oscillator's frequencies; the
positive integer (resonance) number, ; the dimensionless Planck constant,
, and the dimensionless wave amplitude, . For , the CGS
and the QGS are unstable for resonance numbers . For small
, the QGS becomes more stable with increasing and decreasing
. When increases, the influence of chaos on the stability of the
QGS is analyzed for different parameters of the model, , and
.Comment: RevTeX, 38 pages, 24 figure
Beam Wandering in the Atmosphere: The Effect of Partial Coherence
The effect of a random phase screen on laser beam wander in a turbulent
atmosphere is studied theoretically. The method of photon distribution function
is used to describe the photon kinetics of both weak and strong turbulence. By
bringing together analytical and numerical calculations, we have obtained the
variance of beam centroid deflections caused by scattering on turbulent eddies.
It is shown that an artificial distortion of the initial coherence of the
radiation can be used to decrease the wandering effect. The physical mechanism
responsible for this reduction and applicability of our approach are discussed.Comment: 16 pages, 5 figure
Perturbation Theory for Quantum Computation with Large Number of Qubits
We describe a new and consistent perturbation theory for solid-state quantum
computation with many qubits. The errors in the implementation of simple
quantum logic operations caused by non-resonant transitions are estimated. We
verify our perturbation approach using exact numerical solution for relatively
small (L=10) number of qubits. A preferred range of parameters is found in
which the errors in processing quantum information are small. Our results are
needed for experimental testing of scalable solid-state quantum computers.Comment: 8 pages RevTex including 2 figure
- …
